Matching Items (3)
137061-Thumbnail Image.png
Description
I tested the hypothesis that in mature colonies of the seed harvester Pogonomyrmex californicus ant species, paired pleometrotic queens would produce workers more efficiently after a massive removal of their work force than haplometrotic queens, paired pleometrotic with haplometrotic queens, and single pleometrotic queens. I suggested that the paired pleometrotic

I tested the hypothesis that in mature colonies of the seed harvester Pogonomyrmex californicus ant species, paired pleometrotic queens would produce workers more efficiently after a massive removal of their work force than haplometrotic queens, paired pleometrotic with haplometrotic queens, and single pleometrotic queens. I suggested that the paired pleometrotic queens would have an advantage of cooperating together in reproducing more workers quicker than the other conditions to make up for the lost workers. This would demonstrate a benefit that pleometrosis has over haplometrosis for mature colonies, which would explain why pleometrosis continues for P.californicus after colony foundation. After removing all but twenty workers for every colony, I took pictures and counted the emerging brood for 52 days. Analyses showed that the paired pleometrotic queens and the haplometrotic queens both grew at an equally efficient rate and the paired pleometrotic and haplometrotic queens growing the least efficiently. However, the results were not significant and did not support the hypothesis that paired pleometrotic queens recover from worker loss more proficiently than other social systems.
ContributorsFernandez, Marisa Raquel (Author) / Fewell, Jennifer (Thesis director) / Gadau, Juergen (Committee member) / Haney, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor)
Created2014-05
134471-Thumbnail Image.png
Description
Pogonomyrmex Californicus, a species of harvester ants, have polyandrous queens, meaning that each queen mates with multiple males before starting a colony. Genetic diversity derived from polyandry can provide fitness benefits to a social insect colony in several ways including an increase in behavioral flexibility of the work force. In

Pogonomyrmex Californicus, a species of harvester ants, have polyandrous queens, meaning that each queen mates with multiple males before starting a colony. Genetic diversity derived from polyandry can provide fitness benefits to a social insect colony in several ways including an increase in behavioral flexibility of the work force. In some cases, P.californicus colonies can even exhibit polygyny, meaning that multiple queens cooperate to produce workers in a colony. In previous studies, the colony size, worker age, and genotypes of Pogonomyrmex californicus colonies were all found to influence task division to varying degrees, with matrilines appearing to only have influence within their respective colonies. These studies on matrilineal or induced variation and division of labor do not consider the effects of naturally occurring patrilineal variation, and it is unclear how exactly these two traits interact to influence colony function. In order to explore the influence of patriline on task division we raised single-queen P. californicus colonies in the lab and tested the effect of patriline on task performance in the workforce. Behavioral observations, and then genotypic data was collected and analyzed for one focal colony in the lab. The microsatellite data revealed a total of five identified patrilines among the observed workers and a Pearson chi-square test of independence showed a significant relationship between patriline and task performance. This suggests that polyandry alone can provide at least some of the benefits of genetic diversity to colony function. Further testing is needed to determine if the addition of cooperative queens may further increase genetic diversity in a colony and could supplement benefits to workforce performance. The benefits of genetic diversity may not be additive, though, in which case extra matrilines would not provide further benefit for the colony and would not then be a main driver of queen cooperation in this and other systems where polyandry and polygyny co-occur.
ContributorsWillis, Alison Rose (Author) / Fewell, Jennifer (Thesis director) / Pratt, Stephen (Committee member) / Haney, Brian (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
141475-Thumbnail Image.png
Description

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection,

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.

ContributorsShaffer, Zachary (Author) / Sasaki, Takao (Author) / Haney, Brian (Author) / Janssen, Marco (Author) / Pratt, Stephen (Author) / Fewell, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-28