Matching Items (803)
Filtering by

Clear all filters

ContributorsKierum, Caitlin (Contributor) / Novak, Gail (Pianist) (Performer) / Liang, Jack (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-11
ContributorsLougheed, Julia (Performer) / Novak, Gail (Pianist) (Performer) / Bayer, Elizabeth Kennedy (Performer) / Clifton-Armenta, Tyler (Performer) / Park, Julie (Performer) / Javier de Alba, Francisco (Performer) / Vientos Dulces (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-07
ContributorsCoffey, Brennan (Performer) / Novak, Gail (Pianist) (Performer) / ASU Library. Music Library (Publisher)
Created2021-04-26
ContributorsHolly, Sean (Performer) / Wright, Aaron (Performer) / Novak, Gail (Pianist) (Performer) / ASU Library. Music Library (Publisher)
Created2021-04-29
ContributorsBreeden, Katherine (Performer) / German, Lindsey (Performer) / Novak, Gail (Pianist) (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-13
Description
ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work

ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work together toward the acceptance and success of a composer's music within an instrument community. For the flute, one such composer is Daniel Dorff (b. 1956). Dorff, a Philadelphia-based composer, has written for symphony orchestra, clarinet, contrabassoon, and others; however, his award-winning works for flute and piccolo are earning him much recognition. He has written works for such illustrious flutists as Mimi Stillman, Walfrid Kujala, and Gary Schocker; his flute works have been recorded by Laurel Zucker, Pamela Youngblood and Lois Bliss Herbine; and his pieces have been performed and premiered at each of the National Flute Association Conventions from 2004 to 2009. Despite this success, little has been written about Dorff's life, compositional style, and contributions to the flute repertory. In order to further promote the flute works of Daniel Dorff, the primary focus of this study is the creation of a compact disc recording of Dorff's most prominent works for flute: April Whirlwind, 9 Walks Down 7th Avenue, both for flute and piano, and Nocturne Caprice for solo flute. In support of this recording, the study also provides biographical information regarding Daniel Dorff, discusses his compositional methods and ideology, and presents background information, description, and performance notes for each piece. Interviews with Daniel Dorff regarding biographical and compositional details serve as the primary source for this document. Suggestions for the performance of the three flute works were gathered through interviews with prominent flutists who have studied and performed Dorff's pieces. Additional performance suggestions for Nocturne Caprice were gathered through a coaching session between the author and the composer. This project is meant to promote the flute works of Daniel Dorff and to help establish their role in the standard flute repertory.
ContributorsRich, Angela Marie (Contributor) / Novak, Gail (Pianist) (Performer) / Buck, Elizabeth Y (Thesis advisor) / Hill, Gary W. (Committee member) / Holbrook, Amy (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2010
ContributorsBroome-Robinson, Julia (Performer) / Novak, Gail (Pianist) (Performer) / Glick, Philip (Performer) / Lynch, Paul (Performer) / Ryall, Blake (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-19
132070-Thumbnail Image.png
Description
Mass nuclear catastrophe is a serious concern for society at large when considering the rising threat of terrorism and the risks associated with harnessing nuclear energy. In the case of a mass nuclear/radiological event that requires hundreds of thousands of individuals to be assessed for radiation exposure, a rapid biodosimetry

Mass nuclear catastrophe is a serious concern for society at large when considering the rising threat of terrorism and the risks associated with harnessing nuclear energy. In the case of a mass nuclear/radiological event that requires hundreds of thousands of individuals to be assessed for radiation exposure, a rapid biodosimetry triage tool is crucial [1]. The Cytokinesis Block Micronucleus Assay (CBMN) is a promising cytogenetic biodosimetry assay for triage [2]; however, it requires shipping samples to a central laboratory (1-3 days) followed by a lengthy cell culture process (~3 days) before the first dose estimate can be available. The total ~ 1 week response time is too long for effective medical care intervention. A shipping incubator could cut the response time in half (~3 days) by culturing samples in transit; however, possible shipping delays beyond 2 days without the addition of a necessary reagent (Cyto-B) would ruin the integrity of the samples—for accurate CBMN assay endpoint observation, Cyto-B must be added within a 24-44 hour window after sample culture is initiated. Here, we propose a “Smart” Shipping Incubator (SSI) that can add Cyto-B while samples are in transit through a centrifugal system equipped with microfluidic capillary valve caps. The custom centrifugal system was constructed with CNC machined and 3D printed plastic parts, controlled by a custom printed circuit board (PBC) microcontroller, and housed inside a commercial shipping incubator (iQ5 from MicroQ Technologies). Teflon-coated, pre-pulled glass micropipettes (FivePhoton BioChemicals) were used as microfluidic capillary valve caps. Release of Cyto-B was characterized by a desktop centrifugal system at different tip sizes and relative centrifugal forces (RCFs). A theoretical model of Cyto-B release was also deduced to aid the optimization of the process. The CBMN assay was conducted both in the SSI with centrifugal Cyto-B release and in a standard CO2 incubator with manual addition of Cyto-B as the control. The expected mechanical shock during shipment was measured to be less than 25g. Optimal Cyto-B release was found to be at 35g RCF with a Teflon-coated 40 µm tip. Similar CBMN dose curves of micronuclei per binucleated cells (MN/BN) vs. exposed radiation (Gy) were produced for samples assessed conventionally and with the SSI. The similarities between the two methods suggest that centrifugation does not significantly affect the CBMN assay.
ContributorsAkkad, Adam Rifat (Author) / Stephanopoulos, Nicholas (Thesis director) / Mills, Jeremy (Committee member) / Gu, Jian (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
ContributorsCrimminger, Jordan (Performer) / Novak, Gail (Pianist) (Performer) / Hong, Dylan (Performer) / Larson, Ben (Performer) / Russell, Liam (Performer) / Raschko, Hannah (Performer) / ASU Library. Music Library (Publisher)
Created2017-10-22
ContributorsStrickland, Kiefer (Performer) / Novak, Gail (Pianist) (Performer) / McKinch, Riley (Performer) / Hoeckley, Stephanie (Performer) / Bates-Kennard, Sarah (Performer) / Moonitz, Olivia (Performer) / Lovelady, Alexis (Performer) / ASU Library. Music Library (Publisher)
Created2017-10-31