Matching Items (39)
133867-Thumbnail Image.png
Description
This study used an online survey methodology looking at all levels of archers and coaches to understand their perceptions of the shooting process and Mental Game importance. The survey asked about the archer's skill level and their training style, as well as their perception of the importance of each ste

This study used an online survey methodology looking at all levels of archers and coaches to understand their perceptions of the shooting process and Mental Game importance. The survey asked about the archer's skill level and their training style, as well as their perception of the importance of each step in the shooting process and the different parts of the Mental Game. The study also processed the impact of performance of an archer based on their perception of importance of the different steps of the shooting process and the Mental Game. Depending on if the archer has ever had a coach, certain steps of the shooting process and certain parts of the Mental Game was impacted by having a coach at one time. While, the level of coach also impacts how the Mental Game is perceived. Throughout this study, imagery was the most impacted by the level of coach the participant is, if the participants have ever had a coach, and how the participants perform.
ContributorsBell, Rebecca Christa (Author) / Craig, Scotty (Thesis director) / Gray, Robert (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135212-Thumbnail Image.png
Description
The purpose of the Oculus Exercise research project we conducted was to find a way to entice individuals to attend a gym more often and for longer periods of time. We have found that many activities are being augmented by the increasingly popular virtual reality technology, and within that space

The purpose of the Oculus Exercise research project we conducted was to find a way to entice individuals to attend a gym more often and for longer periods of time. We have found that many activities are being augmented by the increasingly popular virtual reality technology, and within that space "gamifying" the activity seems to attract more users. Given the idea of making activities more entertaining to users through "gamification", we decided to incorporate virtual reality, using the Oculus Rift, to immerse users within a simulated environment to potentially drive the factors previously identified in respect to gym utilization. To start, we surveyed potential users to gauge potential interest in virtual reality and its usage in physical exercise. Based on the initial responses, we saw that there was a definite interest in "gamifying" physical exercises using virtual reality, and proceeded to design a prototype using Unreal Engine 4 -- which is an engine for creating high quality video games with support for virtual reality -- to experiment how it would affect a standard workout routine. After considering several options, we decided to move forward with designing our prototype to augment a spin machine with virtual reality due to its common usage within a gym, and the consistent cardiovascular exercise it entails, as well as the safety intrinsic to it being a mostly stationary device. By analyzing the results of a survey after experimenting upon a user test group, we can begin to correlate the benefits and the drawbacks of using virtual reality in physical exercise, and the feasibility of doing so.
ContributorsCarney, Nicholas (Co-author) / West, Andrew (Co-author) / Dobkins, Jacob (Co-author) / Amresh, Ashish (Thesis director) / Gray, Robert (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
Description
This Honors thesis was written in partial fulfillment of the requirements for a Bachelor of Science in Human Systems Engineering with Honors. The project consists of a literature review that explores the uses and applications of Machine Learning and Artificial Intelligence techniques in the field of commercial aviation. After a

This Honors thesis was written in partial fulfillment of the requirements for a Bachelor of Science in Human Systems Engineering with Honors. The project consists of a literature review that explores the uses and applications of Machine Learning and Artificial Intelligence techniques in the field of commercial aviation. After a brief introduction and explanation of the most commonly used algorithms in the field of aviation, it explores the applications of Machine Learning techniques for risk reduction, and for the betterment of in-flight operations, and pilot selection, training, and assessment.
ContributorsInderberg, Laura (Author) / Gray, Robert (Thesis director) / Demir, Mustafa (Committee member) / Barrett, The Honors College (Contributor) / Human Systems Engineering (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-12
168319-Thumbnail Image.png
Description
Human operators are more prone to errors under high-workload conditions. However, error-commission research in cognitive science has been limited to studying behavior in single-choice reaction time tasks, which do not represent the complex multitasking scenarios faced in the real-world. In the current paper, prior evidence for a cognitive error-monitoring mechanism

Human operators are more prone to errors under high-workload conditions. However, error-commission research in cognitive science has been limited to studying behavior in single-choice reaction time tasks, which do not represent the complex multitasking scenarios faced in the real-world. In the current paper, prior evidence for a cognitive error-monitoring mechanism was applied toward predictions for how humans would react after making errors in a more ecologically valid multitasking paradigm. Previous work on neural and behavioral indices of error-monitoring strongly supports the idea that errors are distracting and can deplete attentional resources. Therefore, it was predicted that after committing an error, if a subject is subsequently presented with two simultaneously initiated task alerts (a conflict trial), they would be more likely to miss their response opportunity for one task and stay tunneled on the other task that originally caused the error. Additionally, it was predicted that this effect would dissipate after several seconds (under different lag conditions), making the error cascade less likely when subsequent tasks are delayed before presentation. A Multi-Attribute Task Battery was used to present the paradigm and collect post-error and post-correct performance measures. The results supported both predictions: Post-error accuracy was significantly lower as compared to post-correct accuracy (as measured through post-trial error rates). Post-trial error rates were also higher at shorter lags and dissipated over time, and the effects of pre-conflict performance on post-trial error rates was especially noticeable at shorter lags (although the interaction was not statistically significant). A follow-up analysis also demonstrated that following errors (as opposed to following correct trials), participants clicked significantly more on the task that originally caused the error (regardless of lag). This continued task-engagement further supports the idea that errors lead to a cognitive tunneling effect. The study provides evidence that in a multitasking scenario, the human cognitive error-monitoring mechanism can be maladaptive, where errors beget more errors. Additionally, the experimental paradigm provides a bridge between concepts originating in highly controlled methods of cognitive science research and more applied scenarios in the field of human factors.
ContributorsLewis, Christina Mary (Author) / Gutzwiller, Robert S (Thesis advisor) / Becker, David V (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2021
Description
During the height of COVID-19 in the summer of 2020, most major sports leagues were shut down or postponed, to limit the spread of COVID-19. However, people still yearned for the community of cheering on their favorite team. To that end, The Game Band, a Los Angeles-based game development studio,

During the height of COVID-19 in the summer of 2020, most major sports leagues were shut down or postponed, to limit the spread of COVID-19. However, people still yearned for the community of cheering on their favorite team. To that end, The Game Band, a Los Angeles-based game development studio, decided to make America's favorite pastime, baseball, virtual. Just like that, Blaseball was born. In this creative project, the Season Twelve version of Blaseball.com was subjected to analysis of its user interface and user experience elements by the author of this paper in the role of the researcher. The research questions posited by this project were as follows: - What user interface/user experience elements of the Season Twelve version of Blaseball.com were effective, and what elements detracted from the purpose of the site? - What recommendations could be made by the researcher to improve the user experience and allow for a more effective user experience of the Season Twelve version of Blaseball.com? To answer these questions, two deliverables were decided upon. The first was a research study consisting of a usability survey and interviews with web developers who worked on Blaseball or Blaseball-related projects. The second deliverable was an industry-level analysis of the Season Twelve version of Blaseball.com to be presented as a culmination of the research and work. Through this process, it had been discovered that while the site was simplistic and could easily direct users to other pages, as intended by the developers, UI elements on individual pages confused and misled users. As such, clarifications and a more in-depth UI were recommended.
ContributorsLyons, Jacob (Author) / Selgrad, Justin (Thesis director) / Gray, Robert (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
187812-Thumbnail Image.png
Description
This study focuses on the impact of team cognitive load on compliance with an Artificial Social Intelligence agent’s (ASI) advice. It also expands on some of the factors that influence team performance, including cognitive load, compliance, and ASI interaction dynamics. The study design comprised three types of ASI agents that

This study focuses on the impact of team cognitive load on compliance with an Artificial Social Intelligence agent’s (ASI) advice. It also expands on some of the factors that influence team performance, including cognitive load, compliance, and ASI interaction dynamics. The study design comprised three types of ASI agents that advised all-human teams, each generating their advice based on variations in message length and frequency: long messages at low frequency, moderate lengths and frequency, and short messages at high frequency. Three team members collaborated to locate and save victims in a simulated Urban Search and Rescue (USAR) task environment, while the ASI provided intervention messages (i.e., advice) through text chat. The ASI monitored the team members in the USAR task environment via its interaction-based analytic components. Then, ASI predicted human team members’ behaviors based on their past and current interactions to provide teamwork interventions to maintain team effectiveness. The findings indicate that (1) team cognitive load was not associated with team compliance with ASI advice, (2) both team cognitive load and compliance with ASI messages were positively related to team performance score, (3) Teams assigned an ASI that had moderate advice length and frequency performed better than the teams that were paired with the other two types of ASIs which demonstrated either short message length and high frequency or long message length and low frequency. Overall, these findings show that the ASI advice interventions are helpful as long as they have moderate-level message length and frequency and are complied with by the team members in the USAR task. Future designs of ASI agents should target these types of intervention message characteristics and prioritize compliance to improve team performance.
ContributorsWillett, Matthew (Author) / Gray, Robert (Thesis advisor) / Gutzwillet, Robert (Committee member) / Becker, Vaughn (Committee member) / Arizona State University (Publisher)
Created2023
189223-Thumbnail Image.png
Description
What makes a human, artificial intelligence, and robot team (HART) succeed despite unforeseen challenges in a complex sociotechnical world? Are there personalities that are better suited for HARTs facing the unexpected? Only recently has resilience been considered specifically at the team level, and few studies have addressed team resilience for

What makes a human, artificial intelligence, and robot team (HART) succeed despite unforeseen challenges in a complex sociotechnical world? Are there personalities that are better suited for HARTs facing the unexpected? Only recently has resilience been considered specifically at the team level, and few studies have addressed team resilience for HARTs. Team resilience here is defined as the ability of a team to reorganize team processes to rebound or morph to overcome an unforeseen challenge. A distinction from the individual, group, or organizational aspects of resilience for teams is how team resilience trades off with team interdependent capacity. The following study collected data from 28 teams comprised of two human participants (recruited from a university populace) and a synthetic teammate (played by an experienced experimenter). Each team completed a series of six reconnaissance missions presented to them in a Minecraft world. The research aim was to identify how to better integrate synthetic teammates for high-risk, high-stress dynamic operations to boost HART performance and HART resilience. All team communications were orally over Zoom. The primary manipulation was the communication given by the synthetic teammate (between-subjects, Task or Task+): Task only communicated the essentials, and Task+ offered clear and concise communications of its own capabilities and limitations. Performance and resilience were measured using a primary mission task score (based upon how many tasks teams completed), time-based measures (such as how long it took to recognize a problem or reorder team processes), and a subjective team resilience score (calculated from participant responses to a survey prompt). The research findings suggest the clear and concise reminders from Task+ enhanced HART performance and HART resilience during high-stress missions in which the teams were challenged by novel events. An exploratory study regarding what personalities may correlate with these improved performance metrics indicated that the Big Five trait taxonomies of extraversion and conscientiousness were positively correlated, whereas neuroticism was negatively correlated with higher HART performance and HART resilience. Future integration of synthetic teammates must consider the types of communications that will be offered to maximize HART performance and HART resilience.
ContributorsGraham, Hudson D. (Author) / Cooke, Nancy J. (Thesis advisor) / Gray, Robert (Committee member) / Holder, Eric (Committee member) / Arizona State University (Publisher)
Created2023
187611-Thumbnail Image.png
Description
Proper allocation of attention while driving is imperative to driver safety, as well as the safety of those around the driver. There is no doubt that in-vehicle alerts can effectively direct driver attention. In fact, visual, auditory, and tactile alert modalities have all shown to be more effective than no

Proper allocation of attention while driving is imperative to driver safety, as well as the safety of those around the driver. There is no doubt that in-vehicle alerts can effectively direct driver attention. In fact, visual, auditory, and tactile alert modalities have all shown to be more effective than no alert at all. However, research on in-vehicle alerts has primarily been limited to single-hazard scenarios. The current research examines the effects of in-vehicle alert modality on driver attention towards simultaneously occurring hazards. When a driver is presented with multiple stimuli simultaneously, there is the risk that they will experience alert masking, when one stimulus is obscured by the presence of another stimulus. As the number of concurrent stimuli increases, the ability to report targets decreases. Meanwhile, the alert acts as another target that they must also process. Recent research on masking effects of simultaneous alerts has shown masking to lead to breakdowns in detection and identification of alarms during a task, outlining a possible cost of alert technology. Additionally, existing work has shown auditory alerts to be more effective in directing driver attention, resulting in faster reaction times (RTs) than visual alerts. Multiple Resource Theory suggests that because of the highly visual nature of driving, drivers may have more auditory resources than visual resources available to process stimuli without becoming overloaded. Therefore, it was predicted that auditory alerts would be more effective in allowing drivers to recognize both potential hazards, measured though reduced brake reaction times and increased accuracy during a post-drive hazard observance question. The current study did not support the hypothesis. Modality did not result in a significant difference in drivers’ attention to simultaneously occurring hazards. The salience of hazards in each scenario seemed to make the largest impact on whether participants observed the hazard. Though the hypothesis was not supported, there were several limitations. Additionally, and regardless, the study results did point to the importance of further research on simultaneously occurring hazards. These scenarios pose a risk to drivers, especially when their attention is allocated to only one of the hazards.
ContributorsMcAlphin, Morgan (Author) / Gutzwiller, Robert S (Thesis advisor) / Cooke, Nancy (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2023
157403-Thumbnail Image.png
Description
Previous research has shown that training visual attention can improve golf putting performance. A technique called the Quiet Eye focuses on increasing a player’s length of fixation between the ball and the hole. When putting, the final fixation is made on the ball before executing the stroke leaving players to

Previous research has shown that training visual attention can improve golf putting performance. A technique called the Quiet Eye focuses on increasing a player’s length of fixation between the ball and the hole. When putting, the final fixation is made on the ball before executing the stroke leaving players to rely on their memory of the hole’s distance and location. The present study aimed to test the effectiveness of Quiet Eye training for final fixation on the hole. Twelve Arizona State University (ASU) students with minimal golf experience putted while wearing eye tracking glasses under the following conditions: from three feet with final fixation on the ball, from six feet with final fixation on the ball, from three feet with final fixation on the hole and from six feet with final fixation on the hole. Participant’s performance was measured before training, following quiet eye training, and under simulated pressure conditions. Putting performance was not significantly affected by final fixation for all conditions. The number of total putts made was significantly greater when putting from three feet for all conditions. Future research should test the effects of this training with expert golfers whose processes are more automatic compared to novices and can afford to look at the hole while putting.
ContributorsGomez, Dennis (Author) / Gray, Robert (Thesis advisor) / Branaghan, Russell (Committee member) / Mara, Andrew F (Committee member) / Arizona State University (Publisher)
Created2019
157384-Thumbnail Image.png
Description
Student pilots are the future of aviation and one of the biggest problems that they face as new pilots is fatigue. The survey was sent out asking if student pilots were fatigued, if they attribute flight training, school work, work outside of school, and social obligations to their sleep loss,

Student pilots are the future of aviation and one of the biggest problems that they face as new pilots is fatigue. The survey was sent out asking if student pilots were fatigued, if they attribute flight training, school work, work outside of school, and social obligations to their sleep loss, and how they spend their time on those activities. The survey was given to aviation students at Arizona State University (ASU) Polytechnic Campus. ASU student pilots were found to be fatigued through a single sample t-test. Other t-tests were done on each of the questions that asked student pilots how flight training, school work, work outside of school and social obligations affect their sleep loss. Flight training and school were found to be contributing to student pilots sleep loss. Work outside of school and social obligations were found to not be contributing to student pilots sleep loss. It was found that student pilots’ tendency to use a planner or calendar was found to not be significant. Along with this planning through the week when they will do assignments or study for exams was also not found to be significant. Students making lists of assignments and when they are due was also found to not be significant. The t-test also found that student pilots are neutral on the topic of whether good time management skills would help increase the amount of sleep that they get.
ContributorsHarris, Mariah Jean (Author) / Cooke, Nancy J. (Thesis advisor) / Nullmeyer, Robert (Thesis advisor) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2019