Matching Items (95)
Filtering by

Clear all filters

193472-Thumbnail Image.png
Description
Nanoelectronics are electronic components that are often only a few nanometers in size. The field of nanoelectronics encompasses a wide range of products and materials that share the trait of being so small that physical forces can modify their characteristics on a nanoscale. These nanoscale devices are dominated by quantum

Nanoelectronics are electronic components that are often only a few nanometers in size. The field of nanoelectronics encompasses a wide range of products and materials that share the trait of being so small that physical forces can modify their characteristics on a nanoscale. These nanoscale devices are dominated by quantum processes including atomistic disorder and tunneling.In contrast to nanoelectronics, which involves the scaling down of devices to nanoscale levels, molecular electronics is concerned with electronic activities that take place within molecule structures. Detection of molecular conductance plays a vital role in the field of molecular electronics and nanotechnology. The ability to measure the conductive behavior of molecules is necessary to study their surface properties, defects, electronic structures, and for bio-sensing. To determine the conductance of the molecule, it is necessary to deduce the current passing through it. This is achieved by applying a voltage bias across the molecule and the detection instrument. Instruments like Scanning Tunneling Microscope (STM) and chip-based characterization (Probe Station) are used to fetch the amount of current flowing through the molecules. The current through molecules can be very small to measure and needs to be amplified. Linear amplifiers are widely used for amplifying these small currents, but due to their low dynamic range they are being replaced by logarithmic amplifiers. This thesis project aims to customize a logarithmic amplifier design to the interface with these instruments to measure the current flowing through these molecules. This thesis starts with a review of a linear- current amplifier-based technology that is used for measuring small currents and its challenges. It then introduces logarithmic amplifier for overcoming those obstacles. This thesis involves design, fabrication, and characterization of the built logarithmic amplifier. Furthermore, the setup includes a custom designed logarithmic amplifier that can be used with instruments like Scanning Tunneling Microscope (STM) and probe station. The key objective of the research is to accurately calibrate the logarithmic amplifier for measurement of currents over a wide range from picoamperes to milliamperes. Dummy resistors with different resistance values are used to replace the sample of which the conductance is to be measured, for testing and calibrating purposes. Bandwidth of the circuit is tested using these different values of resistors.
ContributorsYeole, Aishwarya Yogesh (Author) / Hihath, Josh (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2024
191490-Thumbnail Image.png
Description
With the demand growing for more sustainable forms of energy in replacement of fossil fuels, a major obstacle arises in the end-of life solar modules that are disposed of in landfills. Aside from the hazardous materials, silicon solar modules contain valuable and scarce materials such as silver. Silver is used

With the demand growing for more sustainable forms of energy in replacement of fossil fuels, a major obstacle arises in the end-of life solar modules that are disposed of in landfills. Aside from the hazardous materials, silicon solar modules contain valuable and scarce materials such as silver. Silver is used in many industries and many applications therefore the recycling and recovering of it is financially beneficial. The purpose of this research was to achieve high purity and recovery of silver using hydrofluoric acid. The following work presents the feasibility of silver recovery through the process of leaching and electrowinning by examining the percent recovery and cathodic coulombic efficiency, followed by a chemical analysis to determine the purity. Varying conditions in leaching and electrowinning parameters are conducted in a synthetic solution to determine the effect on silver recovery and cathodic coulombic efficiency. It was determined that the silver recovery was dependent on the applied potential, system configuration and time. The system is capable of recovery rates of over 95% at -1 V. The system is further tested on solar cells to prove that silver can be recovered. There was over 99% purity from the experiments conducted in synthetic solution and from solar cells. Additionally, a circular chemistry is proposed that allows the reuse of hydrofluoric acid for leaching and electrowinning.
ContributorsChen, Theresa (Author) / Tao, Meng (Thesis advisor) / Deng, Shuguang (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2024
191704-Thumbnail Image.png
Description
Neurological disorders are the leading cause of physical and cognitive declineglobally and affect nearly 15% of the current worldwide population. These disorders include, but are not limited to, epilepsy, Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. With the aging population, an increase in the prevalence of neurodegenerative disorders is expected. Electrophysiological monitoring of

Neurological disorders are the leading cause of physical and cognitive declineglobally and affect nearly 15% of the current worldwide population. These disorders include, but are not limited to, epilepsy, Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. With the aging population, an increase in the prevalence of neurodegenerative disorders is expected. Electrophysiological monitoring of neural signals has been the gold standard for clinicians in diagnosing and treating neurological disorders. However, advances in detection and stimulation techniques have paved the way for relevant information not seen by standard procedures to be captured and used in patient treatment. Amongst these advances have been improved analysis of higher frequency activity and the increased concentration of alternative biomarkers, specifically pH change, during states of increased neural activity. The design and fabrication of devices with the ability to reliably interface with the brain on multiple scales and modalities has been a significant challenge. This dissertation introduces a novel, concentric, multi-scale micro-ECoG array for neural applications specifically designed for seizure detection in epileptic patients. This work investigates simultaneous detection and recording of adjacent neural tissue using electrodes of different sizes during neural events. Signal fidelity from electrodes of different sizes during in vivo experimentation are explored and analyzed to highlight the advantages and disadvantages of using varying electrode sizes. Furthermore, the novel multi-scale array was modified to perform multi-analyte detection experiments of pH change and electrophysiological activity on the cortical surface during epileptic events. This device highlights the ability to accurately monitor relevant information from multiple electrode sizes and concurrently monitor multiple biomarkers during clinical periods in one procedure that typically requires multiple surgeries.
ContributorsAkamine, Ian (Author) / Blain Christen, Jennifer (Thesis advisor) / Abbas, Jimmy (Committee member) / Muthuswamy, Jitendran (Committee member) / Goryll, Michael (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2024
156861-Thumbnail Image.png
Description
In this project, current-voltage (I-V) and Deep Level Transient Spectroscopy (DLTS) measurements are used to (a) characterize the electrical properties of Nb/p-type Si Schottky barriers, (b) identify the concentration and physical character of the electrically active defects present in the depletion region, and (c) use thermal processing to reduce the

In this project, current-voltage (I-V) and Deep Level Transient Spectroscopy (DLTS) measurements are used to (a) characterize the electrical properties of Nb/p-type Si Schottky barriers, (b) identify the concentration and physical character of the electrically active defects present in the depletion region, and (c) use thermal processing to reduce the concentration or eliminate the defects. Barrier height determinations using temperature-dependent I-V measurements indicate that the barrier height decreases from 0.50 eV to 0.48 eV for anneals above 200 C. The electrically-active defect concentration measured using DLTS (deep level transient spectroscopy) drops markedly after anneals at 250 C.

A significant increase in leakage currents is almost always observed in near-ideal devices upon annealing. In contrast, non-ideal devices dominated by leakage currents annealed at 150 C to 250 C exhibit a significant decrease in such currents.
ContributorsKrishna Murthy, Madhu (Author) / Newman, Nathan (Thesis advisor) / Goryll, Michael (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018
156786-Thumbnail Image.png
Description
Proteins play a central role to human body and biological activities. As powerful tools for protein detections, many surface plasmon resonance based techniques have been developed to enhance the sensitivity. However, sensitivity is not the only final goal. As a biosensor, four things really matter: sensitivity, specificity, resolution (temporal/spatial) and

Proteins play a central role to human body and biological activities. As powerful tools for protein detections, many surface plasmon resonance based techniques have been developed to enhance the sensitivity. However, sensitivity is not the only final goal. As a biosensor, four things really matter: sensitivity, specificity, resolution (temporal/spatial) and throughput.

This dissertation presents several works on developing novel plasmonic based techniques for protein detections on the last two aspects to extend the application field. A fast electrochemically controlled plasmonic detection technique is first developed with the capability of monitoring electrochemical signal with nanosecond response time. The study reveals that the conformational gating of electron transfer in a redox protein (cytochrome c) takes place over a broad range of time scales (sub-µs to ms). The second platform integrates ultra-low volume piezoelectric liquid dispensing and plasmonic imaging detection to monitor different protein binding processes simultaneously with low sample cost. Experiment demonstrates the system can observe binding kinetics in 10×10 microarray of 6 nL droplet, with variations of kinetic rate constants among spots less than ±5%. A focused plasmonic imaging system with bi-cell algorithm is also proposed for spatial resolution enhancement. The two operation modes, scanning mode and focus mode, can be applied for different purposes. Measurement of bacterial aggregation demonstrates the higher spatial resolution. Detections of polystyrene beads binding and 50 nm gold nanoparticles oscillation show a high signal to noise ratio of the system.

The real properties of protein rely on its dynamic personalities. The above works shed light upon fast and high throughput detection of protein kinetics, and enable more applications for plasmonic imaging techniques. It is anticipated that such methods will help to invoke a new surge to unveil the mysteries of biological activities and chemical process.
ContributorsWang, Yan (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Goryll, Michael (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2018
156761-Thumbnail Image.png
Description
The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point (MPP) and the correspondingly ll factor (FF) are investigated. Dierent

The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point (MPP) and the correspondingly ll factor (FF) are investigated. Dierent loss sources are analyzed separately, and the weight of each in the total loss at the MPP are evaluated. The total series resistance is measured and then compared with the value obtained through summation over each of its components. In other words, series resistance losses due to recombination, vertical and lateral carrier transport, metalization, etc, are individually evaluated, and then by adding all these components together, the total loss is calculated. The concept of ll factor and its direct dependence on the loss mechanisms at the MPP of the device is explained, and its sensitivity to nearly every processing step of the cell fabrication is investigated. This analysis provides a focus lens to identify the main source of losses in SHJ solar cells and pave the path for further improvements in cell efficiency.

In this thesis, we provide a detailed understanding of the FF concept; we explain how it can be directly measured; how it can be calculated and what expressions can better approximate its value and under what operating conditions. The relation between FF and cell operating condition at the MPP is investigated. We separately analyzed the main FF sources of losses including recombination, sheet resistance, contact resistance and metalization. We study FF loss due to recombination and its separate components which include the Augur, radiative and SRH recombination is investigated. We study FF loss due to contact resistance and its separate components which include the contact resistance of dierent interfaces, e.g. between the intrinsic and doped a-Si layers, TCO and a-Si layers. We also study FF loss due to lateral transport and its components that including the TCO sheet resistance, the nger and the busbars resistances.
ContributorsLeilaeioun, Mohammadmehdi (Ashling) (Author) / Goodnick, Stephen (Thesis advisor) / Goryll, Michael (Thesis advisor) / Bertoni, Mariana (Committee member) / Bowden, Stuart (Committee member) / Stuckelberger, Michael (Committee member) / Arizona State University (Publisher)
Created2018
156613-Thumbnail Image.png
Description
This work describes efforts made toward the development of a compact, quantitative fluorescence-based multiplexed detection platform for point-of-care diagnostics. This includes the development of a microfluidic delivery and actuation system for multistep detection assays. Early detection of infectious diseases requires high sensitivity dependent on the precise actuation of fluids.

Methods

This work describes efforts made toward the development of a compact, quantitative fluorescence-based multiplexed detection platform for point-of-care diagnostics. This includes the development of a microfluidic delivery and actuation system for multistep detection assays. Early detection of infectious diseases requires high sensitivity dependent on the precise actuation of fluids.

Methods of fluid actuation were explored to allow delayed delivery of fluidic reagents in multistep detection lateral flow assays (LFAs). Certain hydrophobic materials such as wax were successfully implemented in the LFA with the use of precision dispensed valves. Sublimating materials such as naphthalene were also characterized along with the implementation of a heating system for precision printing of the valves.

Various techniques of blood fractionation were also investigated and this work demonstrates successful blood fractionation in an LFA. The fluid flow of reagents was also characterized and validated with the use of mathematical models and multiphysics modeling software. Lastly intuitive, user-friendly mobile and desktop applications were developed to interface the underlying Arduino software. The work advances the development of a system which successfully integrates all components of fluid separation and delivery along with highly sensitive detection and a user-friendly interface; the system will ultimately provide clinically significant diagnostics in a of point-of-care device.
ContributorsArafa, Hany M (Author) / Blain Christen, Jennifer M (Thesis advisor) / Goryll, Michael (Committee member) / Smith, Barbara (Committee member) / Arizona State University (Publisher)
Created2018
157247-Thumbnail Image.png
Description
Photovoltaics (PV) is one of the promising options for maintaining sustainable energy supply because it is environmentally friendly, a non-polluting and low-maintenance energy source. Despite the many advantages of PV, solar energy currently accounts for only 1% of the global energy portfolio for electricity generation. This is because the cost

Photovoltaics (PV) is one of the promising options for maintaining sustainable energy supply because it is environmentally friendly, a non-polluting and low-maintenance energy source. Despite the many advantages of PV, solar energy currently accounts for only 1% of the global energy portfolio for electricity generation. This is because the cost of electricity from PV remains about a factor of two higher than the fossil fuel (10¢/kWh). Widely-used commercial methods employed to generate PV energy, such as silicon or thin film-based technologies, are still expensive as they are processed through vacuum-based techniques. Therefore, it is desirable to find an alternative method that is open-air and continuous process for the mass production of solar cells.

The objective of the research in this thesis is to develop low-cost spray pyrolysis technique to synthesize oxides thin films for applications in solar cells. Chapter 4 and 5 discuss spray-deposited dielectric oxides for their applications in Si solar cells. In Chapter 4, a successful deposition of Al2O3 is demonstrated using water as the solvent which ensures a lower cost and safer process environment. Optical, electrical, and structural properties of spray-deposited Al2O3 are investigated and compared to the industrial standard Atomic Layer Deposition (ALD) Al2O3/Plasma Enhanced Chemical Vapor Deposition (PECVD) SiNx stack, to reveal the suitability of spray-deposited Al2O3 for rear passivation and optical trapping in p-type Si Passivated Emitter and Rear Cell (PERC) solar cells. In Chapter 5, The possibility of using low-cost spray-deposited ZrO2 as the antireflection coating for Si solar cells is investigated. Optical, electrical and structural properties of spray-deposited ZrO2 films are studied and compared to the industrial standard antireflection coating PECVD SiNx. In Chapter 6, spray-deposited hematite Fe2O3 and sol-gel prepared anatase TiO2 thin films are sulfurized by annealing in H2S to investigate the band gap narrowing by sulfur doping and explore the possibility of using ternary semiconductors for their application as solar absorbers.
ContributorsShin, Woo Jung (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2019
157593-Thumbnail Image.png
Description
Environmental pollution has been one of the most challenging problems in modern society and more and more health issues are now linked to environmental pollution and especially, air pollution. Certain sensitive group like patients with asthma are highly influenced by the environmental air quality and knowledge of the daily air

Environmental pollution has been one of the most challenging problems in modern society and more and more health issues are now linked to environmental pollution and especially, air pollution. Certain sensitive group like patients with asthma are highly influenced by the environmental air quality and knowledge of the daily air pollution exposure is of great importance for the management and prevention of asthma attack. Hence small form factor, real time, accurate, sensitive and easy to use portable devices for environmental monitoring are of great value.

Three novel image-based methods for quantitative real time environmental monitoring were introduced and the sensing principle, sensor performances were evaluated through simulation and field tests. The first sensing principle uses surface plasmon resonance (SPR) image and home-made molecular sieve (MS) column to realize real time chemical separation and detection. SPR is sensitive and non-specific, which makes it a desirable optical method for sensitive biological and chemical sensing, the miniaturized MS column provides small area footprint and makes it possible for SPR to record images of the whole column area. The innovative and system level integration approach provide a new way for simultaneous chemical separation and detection. The second sensor uses scattered laser light, Complementary metal-oxide-semiconductor (CMOS) imager and image processing to realize real-time particulate matter (PM) sensing. Complex but low latency algorithm was developed to obtain real time information for PM including PM number, size and size distribution. The third sensor uses gradient based colorimetric sensor, absorbance light signal and image processing to realize real-time Ozone sensing and achieved high sensitivity and substantially longer lifetime compared to conventional colorimetric sensors. The platform provides potential for multi-analyte integration and large-scale consumer use as wearable device.

The three projects provide novel, state-of-the-art and sensitive solutions for environmental and personal exposure monitoring. Moreover, the sensing platforms also provide tools for clinicians and epidemiologists to conduct large scale clinical studies on the adverse health effects of pollutants on various kinds of diseases.
ContributorsDu, Zijian (Author) / Tao, Nongjian (Thesis advisor) / Goryll, Michael (Committee member) / Herckes, Pierre (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2019
156930-Thumbnail Image.png
Description
Over the past several decades, there has been a growing interest in the use of fluorescent probes in low-cost diagnostic devices for resource-limited environments. This dissertation details the design, development, and deployment of an inexpensive, multiplexed, and quantitative, fluorescence-based lateral flow immunoassay platform, in light of the specific constraints associated

Over the past several decades, there has been a growing interest in the use of fluorescent probes in low-cost diagnostic devices for resource-limited environments. This dissertation details the design, development, and deployment of an inexpensive, multiplexed, and quantitative, fluorescence-based lateral flow immunoassay platform, in light of the specific constraints associated with resource-limited settings.

This effort grew out of the need to develop a highly sensitive, field-deployable platform to be used as a primary screening and early detection tool for serologic biomarkers for the high-risk human papillomavirus (hrHPV) infection. A hrHPV infection is a precursor for developing high-grade cervical intraepithelial neoplasia (CIN 2/3+). Early detection requires high sensitivity and a low limit-of-detection (LOD). To this end, the developed platform (DxArray) takes advantage of the specificity of immunoassays and the selectivity of fluorescence for early disease detection. The long term goal is to improve the quality of life for several hundred million women globally, at risk of being infected with hrHPV.

The developed platform uses fluorescent labels over the gold-standard colorimetric labels in a compact, high-sensitivity lateral flow assay configuration. It is also compatible with POC settings as it substitutes expensive and bulky light sources for LEDs, low-light CMOS cameras, and photomultiplier tubes for photodiodes, in a transillumination architecture, and eliminates the need for expensive focusing/transfer optics. The platform uses high-quality interference filters at less than $1 each, enabling a rugged and robust design suitable for field use.

The limit of detection (LOD) of the developed platform is within an order of magnitude of centralized laboratory diagnostic instruments. It enhances the LOD of absorbance or reflectometric and visual readout lateral flow assays by 2 - 3 orders of magnitude. This system could be applied toward any chemical or bioanalytical procedure that requires a high performance at low-cost.

The knowledge and techniques developed in this effort is relevant to the community of researchers and industry developers looking to deploy inexpensive, quantitative, and highly sensitive diagnostic devices to resource-limited settings.
ContributorsObahiagbon, Uwadiae (Author) / Blain Christen, Jennifer M (Thesis advisor) / Anderson, Karen S (Committee member) / Goryll, Michael (Committee member) / Smith, Barbara S. (Committee member) / Arizona State University (Publisher)
Created2018