Matching Items (5)
129534-Thumbnail Image.png
Description

Optically pumped deep-ultraviolet (DUV) lasing with low threshold was demonstrated from AlGaN-based multiple-quantum-well (MQW) heterostructures grown on sapphire substrates. The epitaxial layers were grown pseudomorphically by metalorganic chemical vapor deposition on (0001) sapphire substrates. Stimulated emission was observed at wavelengths of 256 nm and 249 nm with thresholds of 61 kW/cm2 and 95 kW/cm2…

Optically pumped deep-ultraviolet (DUV) lasing with low threshold was demonstrated from AlGaN-based multiple-quantum-well (MQW) heterostructures grown on sapphire substrates. The epitaxial layers were grown pseudomorphically by metalorganic chemical vapor deposition on (0001) sapphire substrates. Stimulated emission was observed at wavelengths of 256 nm and 249 nm with thresholds of 61 kW/cm2 and 95 kW/cm2 at room temperature, respectively. The thresholds are comparable to the reported state-of-the-art AlGaN-based MQW DUV lasers grown on bulk AlN substrates emitting at 266 nm. These low thresholds are attributed to the optimization of active region and waveguide layer as well as the use of high-quality AlN/sapphire templates. The stimulated emission above threshold was dominated by transverse-electric polarization. This work demonstrates the potential candidacy of sapphire substrates for DUV diode lasers.

ContributorsLi, Xiao-Hang (Author) / Detchprohm, Theeradetch (Author) / Kao, Tsung-Ting (Author) / Satter, Md. Mahbub (Author) / Shen, Shyh-Chiang (Author) / Yoder, P. Douglas (Author) / Dupuis, Russell D. (Author) / Wang, Shuo (Author) / Wei, Yong (Author) / Xie, Hongen (Author) / Fischer, Alec M. (Author) / Ponce, Fernando (Author) / Wernicke, Tim (Author) / Reich, Christoph (Author) / Martens, Martin (Author) / Kneissl, Michael (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-10-06
129282-Thumbnail Image.png
Description

We demonstrate transverse-magnetic (TM) dominant deep-ultraviolet (DUV) stimulated emission from photo-pumped AlGaN multiple-quantum-well lasers grown pseudomorphically on an AlN/sapphire template by means of photoluminescence at room temperature. The TM-dominant stimulated emission was observed at wavelengths of 239, 242, and 243 nm with low thresholds of 280, 250, and 290 kW/cm[superscript 2], respectively.

We demonstrate transverse-magnetic (TM) dominant deep-ultraviolet (DUV) stimulated emission from photo-pumped AlGaN multiple-quantum-well lasers grown pseudomorphically on an AlN/sapphire template by means of photoluminescence at room temperature. The TM-dominant stimulated emission was observed at wavelengths of 239, 242, and 243 nm with low thresholds of 280, 250, and 290 kW/cm[superscript 2], respectively. In particular, the lasing wavelength of 239 nm is shorter compared to other reports for AlGaN lasers grown on foreign substrates including sapphire and SiC. The peak wavelength difference between the transverse-electric (TE)-polarized emission and TM-polarized emission was approximately zero for the lasers in this study, indicating the crossover of crystal-field split-off hole and heavy-hole valence bands. The rapid variation of polarization between TE- and TM-dominance versus the change in lasing wavelength from 243 to 249 nm can be attributed to a dramatic change in the TE-to-TM gain coefficient ratio for the sapphire-based DUV lasers in the vicinity of TE-TM switch.

ContributorsLi, Xiao-Hang (Author) / Kao, Tsung-Ting (Author) / Satter, Md. Mahbub (Author) / Wei, Yong (Author) / Wang, Shuo (Author) / Xie, Hongen (Author) / Shen, Shyh-Chiang (Author) / Yoder, P. Douglas (Author) / Fischer, Alec M. (Author) / Ponce, Fernando (Author) / Detchprohm, Theeradetch (Author) / Dupuis, Russell D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-26
129439-Thumbnail Image.png
Description

InAs quantum dot multilayers have been grown using AlxGa1-x As spacers with dimensions and compositions near the theoretical values for optimized efficiencies in intermediate band photovoltaic cells. Using an aluminum composition of x = 0.3 and InAs dot vertical dimensions of 5 nm, transitions to an intermediate band with energy close to the

InAs quantum dot multilayers have been grown using AlxGa1-x As spacers with dimensions and compositions near the theoretical values for optimized efficiencies in intermediate band photovoltaic cells. Using an aluminum composition of x = 0.3 and InAs dot vertical dimensions of 5 nm, transitions to an intermediate band with energy close to the ideal theoretical value have been obtained. Optimum size uniformity and density have been achieved by capping the quantum dots with GaAs following the indium-flush method. This approach has also resulted in minimization of crystalline defects in the epilayer structure.

ContributorsJakomin, R. (Author) / Kawabata, R. M. S. (Author) / Mourao, R. T. (Author) / Micha, D. N. (Author) / Pires, M. P. (Author) / Xie, H. (Author) / Fischer, Alec M. (Author) / Ponce, Fernando (Author) / Souza, P. L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-07
129648-Thumbnail Image.png
Description

The pseudo-binary alloy of indium((x))gallium((1-x))nitride has a compositionally dependent bandgap ranging from 0.65 to 3.42 eV, making it desirable for light emitting diodes and solar cell devices. Through modeling and film growth, the authors investigate the use of InxGa1-xN as an active layer in an induced junction. In an induced

The pseudo-binary alloy of indium((x))gallium((1-x))nitride has a compositionally dependent bandgap ranging from 0.65 to 3.42 eV, making it desirable for light emitting diodes and solar cell devices. Through modeling and film growth, the authors investigate the use of InxGa1-xN as an active layer in an induced junction. In an induced junction, electrostatics are used to create strong band bending at the surface of a doped material and invert the bands. The authors report modeling results, as well as preliminary film quality experiments for an induced junction in InGaN by space charge effects of neighboring materials, piezoelectric effects, and spontaneous polarization. (C) 2013 American Vacuum Society.

ContributorsWilliams, Joshua (Author) / Williamson, Todd L. (Author) / Hoffbauer, Mark A. (Author) / Fischer, Alec M. (Author) / Goodnick, Stephen (Author) / Faleev, Nikolai (Author) / Ghosh, Kunal (Author) / Honsberg, Christiana (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-09-18
128042-Thumbnail Image.png
Description

The properties of InAs quantum dots (QDs) have been studied for application in intermediate band solar cells. It is found that suppression of plastic relaxation in the QDs has a significant effect on the optoelectronic properties. Partial capping plus annealing is shown to be effective in controlling the height of

The properties of InAs quantum dots (QDs) have been studied for application in intermediate band solar cells. It is found that suppression of plastic relaxation in the QDs has a significant effect on the optoelectronic properties. Partial capping plus annealing is shown to be effective in controlling the height of the QDs and in suppressing plastic relaxation. A force balancing model is used to explain the relationship between plastic relaxation and QD height. A strong luminescence has been observed from strained QDs, indicating the presence of localized states in the desired energy range. No luminescence has been observed from plastically relaxed QDs.

ContributorsXie, Hongen (Author) / Prioli Menezes, Rodrigo (Author) / Fischer, Alec M. (Author) / Ponce, Fernando (Author) / Kawabata, R. M. S. (Author) / Pinto, L. D. (Author) / Jakomin, R. (Author) / Pires, M. P. (Author) / Souza, P. L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-15