Matching Items (20)
136810-Thumbnail Image.png
Description
This project explores a variety of ways of framing the problem of obesity, beginning with a multidisciplinary assessment of genetic, environmental, cultural, nutritional, and socioeconomic factors involved in the structure and the consequences of each frame. How obesity is framed as a problem has a profound impact on the kinds

This project explores a variety of ways of framing the problem of obesity, beginning with a multidisciplinary assessment of genetic, environmental, cultural, nutritional, and socioeconomic factors involved in the structure and the consequences of each frame. How obesity is framed as a problem has a profound impact on the kinds of solutions that may be deemed scientifically appropriate. But frames are not entirely evidence-based, inasmuch as political and moral values infuse debates about the nature of obesity. Drawing on interdisciplinary resources from bioethics and the philosophy of science, I strive to offer strategic insight in to how to navigate the complexity of these issues.
ContributorsYanamandra, Meghana (Author) / Robert, Jason (Thesis director) / Wharton, Christopher (Committee member) / Drago, Mary (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-05
172850-Thumbnail Image.png
Description

Carl Richard Moore was a professor and researcher at the University of Chicago in Chicago, Illinois who studied sex hormones in animals from 1916 until his death in 1955. Moore focused on the role of hormones on sex differentiation in offspring, the optimal conditions for sperm production, and the effects

Carl Richard Moore was a professor and researcher at the University of Chicago in Chicago, Illinois who studied sex hormones in animals from 1916 until his death in 1955. Moore focused on the role of hormones on sex differentiation in offspring, the optimal conditions for sperm production, and the effects of vasectomy or testicular implants on male sex hormone production. Moore's experiments to create hermaphrodites in the laboratory contributed to the theory of a feedback loop between the pituitary and fetal gonadal hormones to control sex differentiation. Moore showed that the scrotal sac controls the temperature for the testes, which is necessary for sperm production. He also helped distinguish the hormones testosterone, and androsterone from testicular extracts.

Created2014-02-18
172858-Thumbnail Image.png
Description

Frank Rattray Lillie's research on freemartins from 1914 to 1920 in the US led to the theory that hormones partly caused for sex differentiation in mammals. Although sometimes applied to sheep, goats, and pigs, the term freemartin most often refers to a sterile cow that has external female genitalia and

Frank Rattray Lillie's research on freemartins from 1914 to 1920 in the US led to the theory that hormones partly caused for sex differentiation in mammals. Although sometimes applied to sheep, goats, and pigs, the term freemartin most often refers to a sterile cow that has external female genitalia and internal male gonads and was born with a normal male twin. Lillie theorized that a freemartin is a genetic female whose process of sexual development from an undifferentiated zygote was suppressed or antagonized by her twin's release of male hormones via their shared blood circulation in utero. Despite publications of similar findings by physician Julius Tandler in Vienna, Austria, in 1910 and physician Karl Keller in Wiesensteig, Germany in 1916 prior to Lillie's research, Lillie often receives credit for the hormonal theory of sex differentiation in the freemartin. Lillie's study of freemartins, and the subsequent research by graduate students in Lillie's laboratory at the University of Chicago in Chicago, Illinois, prompted many embryologists to research sex differentiation and hermaphroditism in mammals.

Created2014-03-14
173928-Thumbnail Image.png
Description

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Created2013-11-17
173513-Thumbnail Image.png
Description

National Geographic's documentary In the Womb: Identical Twins focuses on the prenatal development of human identical twins. Director Lorne Townend uses three-dimensional (3D) and four-dimensional (4D) ultrasound imaging and microscopy to depict twin development , genetic and epigenetic variations in the fetuses, and methods of fetal survival in the confines

National Geographic's documentary In the Womb: Identical Twins focuses on the prenatal development of human identical twins. Director Lorne Townend uses three-dimensional (3D) and four-dimensional (4D) ultrasound imaging and microscopy to depict twin development , genetic and epigenetic variations in the fetuses, and methods of fetal survival in the confines of the womb. Artist renditions of scientific data fill in areas of development inaccessible to the imaging tools. The 50-minute film describes the lives twins live after birth and describes new research that identical twins might not be as identical as once thought. In the womb: Identical Twins is a sequel to the 2005 National Geographic film In the Womb.

Created2012-03-08
172684-Thumbnail Image.png
Description

Congenital rubella syndrome (CRS) can occur in children whose mothers contracted the rubella virus, sometimes called German measles, during pregnancy. Depending on the gestational period when the mother contracts rubella, an infant born with CRS may be unaffected by the virus or it may have severe developmental defects. The most

Congenital rubella syndrome (CRS) can occur in children whose mothers contracted the rubella virus, sometimes called German measles, during pregnancy. Depending on the gestational period when the mother contracts rubella, an infant born with CRS may be unaffected by the virus or it may have severe developmental defects. The most severe effects of the virus on fetal development occur when the mother contracts rubella between conception and the first trimester. Defects from maternal rubella in the first trimester are included in the term congenital rubella syndrome, but physicians and researchers specifically refer to those defects as rubella embryopathy. Developmental defects are less severe if the mother contracts rubella in the second trimester, and they are generally negligible if the infection occurs in the third trimester. Prenatal rubella infection can cause birth defects which include deafness, compromised vision, abnormal heart development, and damage to the central nervous system which can lead to compromised cognition and learning disabilities.

Created2014-01-10
172807-Thumbnail Image.png
Description

The endothelium is the layer of cells lining the blood vessels in animals. It weighs more than one kilogram in adult humans, and it covers a surface area of 4000 to 7000 square meters. The endothelium is the cellular interface between the circulating blood and underlying tissue. As the medium

The endothelium is the layer of cells lining the blood vessels in animals. It weighs more than one kilogram in adult humans, and it covers a surface area of 4000 to 7000 square meters. The endothelium is the cellular interface between the circulating blood and underlying tissue. As the medium between these two sets of tissues, endothelium is part of many normal and disease processes throughout the body. The endothelium responds to signals from its surrounding environment to help regulate functions like the resistance that blood vessels need to pump blood through the body (vasomotor tone), the policing of substances trying to enter or exit the blood vessel (blood vessel permeability), and the ability of blood to clot (hemostasis). In addition to diseases like atherosclerosis, endothelium has been indicated as a component in pathologies like cancer, asthma, diabetes, hepatitis, multiple sclerosis, and sepsis. The shape, size, and appearance of endothelial cells, called their phenotypes, vary depending upon which part of the body the cells are from, a property called phenotypic heterogeneity. The endothelium, its properties, and its responses to stimuli are governed largely by the local environment of the cells.

Created2014-01-28
172808-Thumbnail Image.png
Description

The concept Fetal Alcohol Syndrome (FAS) refers to a set of birth defects that occur in children born to mothers who abused alcohol during pregnancy. The alcohol-induced defects include pre- and post-natal growth deficiencies, minor facial abnormalities, and damage to the developing central nervous system (CNS). FAS is the most

The concept Fetal Alcohol Syndrome (FAS) refers to a set of birth defects that occur in children born to mothers who abused alcohol during pregnancy. The alcohol-induced defects include pre- and post-natal growth deficiencies, minor facial abnormalities, and damage to the developing central nervous system (CNS). FAS is the most serious condition physicians group under the heading of Fetal Alcohol Spectrum Disorders, which also includes Alcohol-Related Birth Defects, like alcohol-induced congenital cardiac defects that are unrelated to a diagnosis of FAS, and Alcohol-Related Neurodevelopmental Disorders, which occur in the absence of any facial birth defects or growth delays. The severity of birth defects associated with FAS can vary depending on the intensity, duration, and frequency of exposure to alcohol during gestation. In addition to these dose-related concerns, maternal factors such as the mother's genetics or how quickly she metabolizes alcohol, and the timing of exposure during prenatal development also impact alcohol-induced abnormalities. As birth defects and anomalies can arise when pregnant women consume alcohol, alcohol is a teratogen, an environmental agent that negatively impacts the course of normal embryonic or fetal development.

Created2014-01-28
172811-Thumbnail Image.png
Description

Early 1990s research conducted by Peter Koopman, John Gubbay, Nigel Vivian, Peter Goodfellow, and Robin Lovell-Badge, showed that chromosomally female (XX) mice embryos can develop as male with the addition of a genetic fragment from the Y chromosome of male mice. The genetic fragment contained a

Early 1990s research conducted by Peter Koopman, John Gubbay, Nigel Vivian, Peter Goodfellow, and Robin Lovell-Badge, showed that chromosomally female (XX) mice embryos can develop as male with the addition of a genetic fragment from the Y chromosome of male mice. The genetic fragment contained a segment of the mouse Sry gene, which is analogous to the human SRY gene. The researchers sought to identify Sry gene as the gene that produced the testis determining factor protein (Tdf protein in mice or TDF protein in humans), which initiates the formation of testis. Koopman's team published their results in 1991 in Male Development of Chromosomally Female Mice Transgenic for Sry gene. Their results showed that Sry gene partly determines the sex of an embryo and is the only gene on the Y chromosome necessary for initiation of male development in mice.

Created2014-01-28
172812-Thumbnail Image.png
Description

In the early twentieth century, scientists and agriculturalists collected plants in greenhouses, botanical gardens, and fields. Seed collection efforts in the twentieth century coincided with the professionalization of plant breeding. When scientists became concerned over the loss of plant genetic diversity due to the expansion of a few agricultural crops

In the early twentieth century, scientists and agriculturalists collected plants in greenhouses, botanical gardens, and fields. Seed collection efforts in the twentieth century coincided with the professionalization of plant breeding. When scientists became concerned over the loss of plant genetic diversity due to the expansion of a few agricultural crops around mid-century, countries and organizations created seed banks for long-term seed storage. Around 1979, environmental groups began to object to what they perceived as limited access to seed banks, and they questioned the ownership of the intellectual property of living organisms. Controversy also ensued over the uneven flow of genetic resources because many of the seed banks were located in the global North, yet plants were collected largely from countries in the global South. The environmental groups' campaigns, which some called the seed wars, and the movement for biodiversity conservation intersected in ways that shaped debates about plant genetic material and seed banking. Several significant shifts in governance occurred in 1994 that led to the creation of the International Plant Genetic Resources Institute in Italy, and to changes in the governance of several international seed banks.

Created2014-01-28