Matching Items (2)
151967-Thumbnail Image.png
Description
A fundamental gap in geomorphic scholarship regards fluvial terraces in small desert drainages and those terraces associated with integrating drainages. This dissertation analyzes four field-based case studies within the Sonoran Desert, south-central Arizona, with the overriding purpose of developing a theory to explain the formative processes and spatial distribution of

A fundamental gap in geomorphic scholarship regards fluvial terraces in small desert drainages and those terraces associated with integrating drainages. This dissertation analyzes four field-based case studies within the Sonoran Desert, south-central Arizona, with the overriding purpose of developing a theory to explain the formative processes and spatial distribution of fluvial terraces in the region. Strath terraces are a common form (Chapters 2, 3, 4) and are created at the expense of bounding pediments that occur on the margins of constraining mountainous drainage boundaries (Chapters 1, 2, 3). Base-level fluctuations of the major drainages cause the formation of new straths at lower elevations. Dramatic pediment adjustment and subsequent regrading follows (Chapter 3), where pediments regrade to strath floodplains. This linkage between pediments and their distal straths is termed the pediment-strath relationship. Stability of the base level of the major drainage leads to lateral migration and straths are carved at the expense of bounding pediments through an erosional asymmetry facilitated by differential rock decay between the channel bank and bed. Fill terraces occur within the Salt River drainage basin as a result of the integration processes that connect formerly endorheic basins (Chapter 4). The topographic, spatial, and sedimentologic relationship of the Stewart Mountain terrace (Chapter 4) points to a different genetic origin than the lower terraces in this basin. The high Stewart Mountain fill terrace records the initial integration of this river. The strath terraces inset below the Stewart Mountain terrace are a result of the pediment-strath relationship. These case studies also reveal that the under-addressed drainage processes of piracy and overflow have significant impacts in the evolution of drainages the lead to both strath and fill terrace formation in this region.
ContributorsLarson, Phillip Herman (Author) / Dorn, Ron I (Thesis advisor) / Schmeeckle, Mark (Thesis advisor) / Douglass, John (Committee member) / Cerveny, Randy (Committee member) / Arizona State University (Publisher)
Created2013
189298-Thumbnail Image.png
Description
Increasing rates of sea-level rise (SLR) pose a major threat to coastal communities around the world. Evidence of these impacts is found in increased rates of extreme weather, erosion, coastal flooding, high water levels and wave height, altered geomorphology, and more. Coastal dunes act as a buffer for neighboring ecosystems

Increasing rates of sea-level rise (SLR) pose a major threat to coastal communities around the world. Evidence of these impacts is found in increased rates of extreme weather, erosion, coastal flooding, high water levels and wave height, altered geomorphology, and more. Coastal dunes act as a buffer for neighboring ecosystems and protect inland communities from increased rates of SLR. The Eureka Littoral Cell (ELC) in Humboldt County, California, which extends from Trinidad Head in the north to Cape Mendocino in the south, experiences extreme wave conditions and higher rates of SLR in comparison to the rest of the Pacific Northwest. This study focuses on assessing the vulnerability of the outer-barrier system of the ELC to SLR and complements previous vulnerability assessments of the inner Humboldt Bay. The study area was partitioned into thirteen (13) representative study reaches based on shoreline change rates and geomorphology. Twenty-two (22) environmental and socio-economic variables were identified to characterize the broader human-environmental connections and exposures that define coastal vulnerability beyond basic physical forcing and exposures. The study first compiled and examined a range of physical, biological, hazardous, socio-cultural, and infrastructure attributes of the outer barrier region of the study site for their inherent vulnerabilities. Second, individual vulnerability scores, based on geographic attributes of each variable, were determined by modifying existing methodologies (e.g., USGS), spanning variable data ranges, and/or with feedback from local representatives and a research advisory team. Aggregations of individual variables were used to provide variable category groupings (e.g., physical, biological, hazards, socio-cultural, and infrastructure). Finally, aggregated values were normalized on a one-to-ten scale to determine two sub-categories of vulnerability (environmental, socio-economic) and an overall comprehensive vulnerability for each study reach. The resulting vulnerability assessments identify which reaches are likely to experience low, moderate, and high levels of vulnerability and, based on variable and sub-grouping values, what factors contribute to this vulnerability. As such, this study addresses the significance of including both environmental and socio-economic variables to examine and characterize vulnerability to SLR and it is anticipated that the results will help inform future adaptation and resilience planning in the region.
ContributorsShinsato, Lara Miyori (Author) / Dorn, Ron I (Thesis advisor) / Walker, Ian J (Thesis advisor) / Schmeeckle, Mark (Committee member) / Arizona State University (Publisher)
Created2023