Matching Items (2)
187607-Thumbnail Image.png
Description
This thesis describes key Stability & Control parameters and a methodology for screening aircraft configurations for adequate handling qualities. For screening aircraft, a general-purpose Excel/ Visual Basic for Application (VBA) analysis tool was built. The analysis tool has built-in functionality to analyze aircraft utilizing a rudder for primary yaw control,

This thesis describes key Stability & Control parameters and a methodology for screening aircraft configurations for adequate handling qualities. For screening aircraft, a general-purpose Excel/ Visual Basic for Application (VBA) analysis tool was built. The analysis tool has built-in functionality to analyze aircraft utilizing a rudder for primary yaw control, collective horizontal tail for pitch, and either aileron or differential horizontal tail for roll control. Additionally, the tool transforms aerodynamic coefficients from the moment reference point to various center of gravity locations while saving data in Stability Axis and Body Axis; it also implements pitch trim. Key stability parameters of interest are the Short Period and Dutch Roll Frequencies, Roll and Spiral time constants, Cnβdynamic, Lateral Control Departure Parameter (LCDP), as well as the stick-fixed Short Period and Dutch Roll Damping. Other areas of interest include pitch and lateral-directional trim as well as the implementation of an Aileron-Rudder Interconnect system. This thesis uses the tool to analyze two historical: 1) the Bell X-2 and 2) the North American X-15 and two theoretical: 3) the “Sky Cruiser” and 4) the generic High-Speed Slender Aircraft (HSSA), aircraft. This thesis identifies varying Stability & Control problems between these aircraft and allows one to explore potential solutions to remedy their inherent flaws.
ContributorsO'Brien, Kevin Patrick (Author) / Takahashi, Timothy T (Thesis advisor) / Dahm, Werner J (Committee member) / Cotting, Christopher M (Committee member) / Arizona State University (Publisher)
Created2023
161412-Thumbnail Image.png
Description
The objective of this study is to estimate the variation of flight performance of a variable sweep wing geometry on the reverse engineered Boeing 2707-100 SST, when compared against the traditional delta wing approach used on supersonic airliner. The reason for this lies beneath the fact that supersonic orientations of

The objective of this study is to estimate the variation of flight performance of a variable sweep wing geometry on the reverse engineered Boeing 2707-100 SST, when compared against the traditional delta wing approach used on supersonic airliner. The reason for this lies beneath the fact that supersonic orientations of wings doesn’t seem to work well for subsonic conditions, and subsonic wings are inefficient for supersonic flight. This would likely mean that flying long haul subsonic with supersonic wing geometry is inefficient compared to regular aircraft, but more importantly requires high takeoff/landing speeds and even long runways to bring the aircraft to hold. One might be able to get around this problem - partially - by adding thrust either by using afterburners, or by using variable geometry wings. To assess the flight performance, the research work done in this report focuses on implementing the latter solution to the abovementioned problem by using the aerodynamic performance parameters such as Coefficient of Lift, Coefficient of Drag along with its components specific to every test Mach number and altitude, along with the propulsion performance parameters such as thrust and thrust specific fuel consumption at different iterations of power settings of engine, flight Mach number and altitude in a propulsion database file to estimate flight performance using flight missions and energy-maneuverability theory approach. The flight performance was studied at several sweep angles of the aircraft to estimate the best possible sweep orientation based on the requirement of mission and an optimal flight mission was developed for an aircraft with swing wing capabilities.
ContributorsChaudhari, Bhargav Naginbhai (Author) / Takahashi, Timothy T (Thesis advisor) / Dahm, Werner J (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2021