Matching Items (33)
148173-Thumbnail Image.png
Description

There is surprisingly little scientific literature describing whether a hockey slap shot positively or negatively transfers to a driving golf swing. Golf and hockey use a similar kinematic sequence to send the ball / puck towards a target, but does that directly translate to positive skill transfer between the two

There is surprisingly little scientific literature describing whether a hockey slap shot positively or negatively transfers to a driving golf swing. Golf and hockey use a similar kinematic sequence to send the ball / puck towards a target, but does that directly translate to positive skill transfer between the two sports, or are there other important factors that could result in a negative skill transfer? The aim of this study is to look further into the two kinematic sequences and determine their intertask skill transfer type. A field experiment was conducted, following a specific research design, in order to compare performance between two groups, one being familiar with the skill that may transfer (hockey slapshot) and the other group being unfamiliar. Both groups had no experience in the skill being tested (driving golf swing) and various data was collected as all of the subjects performed 10 golf swings. The results of the data analysis showed that the group with experience in hockey had a higher variability of ball distance and ball speed. There are many factors of a hockey slapshot that are likely to develop a negative intertask skill transfer, resulting in this group's high inconsistency when performing a golf swing. On the other hand, the group with hockey experience also had higher mean club speed, showing that some aspects of the hockey slapshot resulted in a positive skill transfer, aiding their ability to perform a golf swing.

ContributorsLarson, Finn Althea (Author) / Peterson, Daniel (Thesis director) / Cryer, Michael (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148198-Thumbnail Image.png
Description

Oscillatory perturbations with varying amplitudes and frequencies have been found to significantly affect human standing balance. However, previous studies have only applied perturbation in either the anterior-posterior (AP) or the medio-lateral (ML) directions. Little is currently known about the impacts of 2D oscillatory perturbations on postural stability, which are

Oscillatory perturbations with varying amplitudes and frequencies have been found to significantly affect human standing balance. However, previous studies have only applied perturbation in either the anterior-posterior (AP) or the medio-lateral (ML) directions. Little is currently known about the impacts of 2D oscillatory perturbations on postural stability, which are more commonly seen in daily life (i.e., while traveling on trains, ships, etc.). This study investigated the effects of applying 2D perturbations vs 1D perturbations on standing stability, and how increasing the frequency and amplitude of perturbation impacts postural stability. A dual-axis robotic platform was utilized to simulate various oscillatory perturbations and evaluate standing postural stability. Fifteen young healthy subjects were recruited to perform quiet stance on the platform. Impacts of perturbation direction (i.e., 1D versus 2D), amplitude, and frequency on postural stability were investigated by analyzing different stability measures, specifically AP/ML/2D Center-of-Pressure (COP) path length, AP/ML/2D Time-to-Boundary (TtB), and sway area. Standing postural stability was compromised more by 2D perturbations than 1D perturbations, evidenced by a significant increase in COP path length and sway area and decrease in TtB. Further, the stability decreased as 2D perturbation amplitude and frequency increased. A significant increase in COP path length and decrease in TtB were consistently observed as the 2D perturbation amplitude and frequency increased. However, sway area showed a considerable increase only with increasing perturbation amplitude but not with increasing frequency.

ContributorsBerrett, Lauren Ann (Author) / Lee, Hyunglae (Thesis director) / Peterson, Daniel (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The following creative project defends that, whether intentionally or not, mental illness and substance abuse are inevitably romanticized in young adult media and discusses the dangers of this romanticization. This project is divided into three parts. The first part consists of psychological evaluations of the main characters of two popular,

The following creative project defends that, whether intentionally or not, mental illness and substance abuse are inevitably romanticized in young adult media and discusses the dangers of this romanticization. This project is divided into three parts. The first part consists of psychological evaluations of the main characters of two popular, contemporary forms of young adult media, Catcher in the Rye by J.D Salinger and Euphoria by Sam Levinson. These evaluations use textual evidence and the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) to determine what symptoms of psychopathology the characters appear to display. The second part consists of a self-written short story that is meant to accurately depict the life of a young adult struggling with mental illness and substance abuse. This story contains various aesthetic techniques borrowed from the two young adult media forms. The final part consists of an aesthetic statement which discusses in depth the aesthetic techniques employed within the short story, Quicksand by Anisha Mehra.

ContributorsMehra, Anisha (Author) / Cryer, Michael (Thesis director) / Cavanaugh Toft, Carolyn (Committee member) / Department of Psychology (Contributor) / Dean, The College of Liberal Arts and Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131023-Thumbnail Image.png
Description

Down syndrome (DS) is caused by either an extra copy of chromosome 21 or by extra material on chromosome 21. This causes various levels of intellectual disability and issues with gross motor skill development which can prevent these individuals from participating in activities of daily living (ADL) such as getting

Down syndrome (DS) is caused by either an extra copy of chromosome 21 or by extra material on chromosome 21. This causes various levels of intellectual disability and issues with gross motor skill development which can prevent these individuals from participating in activities of daily living (ADL) such as getting dressed, self-care, or grocery shopping. People with DS have a decreased ability to balance, an abnormal and slower gait pattern, difficulty adapting to new environments, and a lack of improvement in these areas with growth and development when compared to their neurotypical peers. The objective of this study was to determine the immediate effects of resistance training (RT) and assisted cycle therapy (ACT) on adults with DS’s balance ability and gait speed. Each participant completed one session of RT, ACT (stationary cycling with the assistance of a motor to maintain a cadence of at least 35% greater than their voluntary cycling speed), and no training in a randomly selected order. Balance and gait speed were measured by a Clinical Test of Sensory Interaction on Balance (CTSIB) (i.e., eyes open firm surface, eyes closed firm surface, eyes open foam surface, eyes closed foam surface) on a Balance Tracking System Board (Btracks board) and by a Timed Up and Go (TUG) test. A total of ten participants’ data was used for analysis. The measures of total path length (cm), anterior-posterior (AP) excursion, and medial-lateral (ML) excursion were used to analyze the CTSIB. The average time was used to analyze the TUG test. The results showed that the eyes closed foam surface balance task was the most challenging balance task for every participant in every intervention. Furthermore, the most improvement was evident in the eyes closed foam surface balance task from pre to post intervention in all of the interventions. Post hoc tests also indicated statistically significant improvements of path length from pre to post in the RT intervention with the eyes closed foam surface balance task as well as with AP excursion in the ACT intervention with the eyes closed foam surface balance task. Possible explanations for improvements from pre to post in the eyes closed foam balance task across all interventions will be discussed with respect to the length of the intervention, and the effect of strength, social and learned factors on balance in adults with DS.

ContributorsKeim, Jeannette Danielle (Author) / Ringenbach, Shannon (Thesis director) / Peterson, Daniel (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
132187-Thumbnail Image.png
Description
Reactive step and treadmill perturbation training have been shown to improve first step measurements and reduce falls. However, the effect of variable training on the efficacy of generalization is poorly understood. The objective of this study was to measure whether the addition of variability in the perturbation training

Reactive step and treadmill perturbation training have been shown to improve first step measurements and reduce falls. However, the effect of variable training on the efficacy of generalization is poorly understood. The objective of this study was to measure whether the addition of variability in the perturbation training protocol can increase the amount of generalization seen in forward perturbations. The study included 28 young, healthy adults between the age of 20-35 years old with no known significant medical history. Fifteen participants underwent constant training in one direction with the same belt acceleration (4 m/s2) and thirteen participants underwent variable training where their foot positioned and belt acceleration (3 m/s2, 4 m/s2, 5 m/s2) were randomized throughout the collections All slips were done in the forward direction requiring a forward reactive step. To assess the effects of variable training an independent sample t-test of the differences in generalization between each group was calculated. Primary outcome variables in both studies were margin of stability (MOS), step length, and step latency. Results from the study indicated that variable training made no significant improvement (p<0.05) in generalization across the variables. The P-values for the difference in generalization of MOS, step length, and step latency were 0.635, 0.225, 0.148 respectively. Despite the lack of significant evidence to support improvement in generalization with variable training, further investigations are warranted to develop training methods capable of reducing falls in at risk populations.
ContributorsArroyo, Randall Adrian (Author) / Peterson, Daniel (Thesis director) / Ofori, Edward (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131921-Thumbnail Image.png
Description
Physical therapy patients still receive their plan of care onto a piece of paper when there are hundreds of engaging physical therapy exercise videos on the internet. These exercise videos are way more appealing to watch and physical therapists should consider delivering Home Exercise Programs (HEP) digitally. There are apps

Physical therapy patients still receive their plan of care onto a piece of paper when there are hundreds of engaging physical therapy exercise videos on the internet. These exercise videos are way more appealing to watch and physical therapists should consider delivering Home Exercise Programs (HEP) digitally. There are apps and online services such as Physioadvisor, Physprac app, Anterior Cruciate Ligament repair app, and work-out apps for people to create their own plan of care and are easily accessible with any electronic device. Most people are receiving information and learning through a lit screen anyways so it may only be a matter of time before people start using these resources instead of a physical therapist. Physical Therapists need to provide better resources for their patients and an app may be all they need. Figures of the results of the Qualtrics survey both Physical Therapists and Patient responses and were provided. A data analysis of each question and responses were interpreted to determine whether patients and physical therapists would like to use a physical therapy app as part of their rehab program. A Physiotherapy research journal with Switzerland researchers conducted a case study in a hospital and determined whether a HEP app testing was effective for patients to utilize.
ContributorsChang, Cheng H. (Author) / Holzapfel, Simon (Thesis director) / Peterson, Daniel (Committee member) / College of Health Solutions (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
134129-Thumbnail Image.png
Description
In motor training, transfer is defined as the gain/loss of performance in one task as a result of training on another. In our laboratory, we have observed that training on a multi-joint coordination task (which simulates arm and wrist movement when feeding) transfers to a dexterity task (which simulates finger

In motor training, transfer is defined as the gain/loss of performance in one task as a result of training on another. In our laboratory, we have observed that training on a multi-joint coordination task (which simulates arm and wrist movement when feeding) transfers to a dexterity task (which simulates finger and hand movement when dressing), such that there are improvements in the dexterity task that emerge without having trained on that specific task. More recently, we have shown that the dexterity task transfers to the multi-joint coordination task. These collective findings suggest that there are shared movement patterns between these two functional motor tasks that may yield this bi-directional transfer effect. Therefore, the objective of this thesis project was to collect kinematic data of the hand to use in future principal component analyses to better understand the underlying mechanism of transfer between these two functional motor tasks. The joint angles of the hand were recorded during twenty second trials of the multi-joint coordination task and the dexterity task. The ranges of motion for the joints in the hand during naïve performance of both motor tasks were analyzed. From a linear regression analysis, we observe that the hand’s ranges of motion were strongly correlated between the two tasks, which suggests that these two functionally different tasks may share movement patterns in terms of joint angles. This similarity of joint angles of the hand may play a role in why we observe this bi-directional transfer between the dexterity and multi-joint coordination tasks. Following neurological injury, patients participate in physical therapy in order to retrain their nervous system to restore lost motor function(s). If patients can only practice a limited number of activities in therapy, our data suggest that other activities may also improve through transfer of training. Kinematic data collection may inform how much a patient improves with motor training and why there may be an improvement in untrained motor tasks.
ContributorsConnor, Sydney Christine (Author) / Schaefer, Sydney (Thesis director) / Peterson, Daniel (Committee member) / Harrington Bioengineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133876-Thumbnail Image.png
Description
Background: Falls are a leading cause of injury in older adults with roughly 1 in 4 American's over the age of 65 experiencing a fall. Research that looks at reactive stepping, or the steps a person takes when they encounter a loss of balance, is sparse. Whether a specific aspect

Background: Falls are a leading cause of injury in older adults with roughly 1 in 4 American's over the age of 65 experiencing a fall. Research that looks at reactive stepping, or the steps a person takes when they encounter a loss of balance, is sparse. Whether a specific aspect of reactive stepping can be linked to falls has yet to be determined. Purpose: The purpose of this study was to determine which reactive stepping characteristics may be correlated with falls in from community dwelling older adults. Methods: 54 older adults (11 fallers & 43 non-fallers) underwent 3 "postural perturbations", in which they leaned back into the testers hands and were released, resulting in one or more reactive steps. Inertial sensors (APDM, inc.) were used to measure participant movement and Quantify reactive steps. Step length and step latency, which is the time it takes for an individual to perform a step, were the primary outcomes measured, along with time to stabilization, number of steps taken, and time until first foot strike. Results: Neither step length or step latency were significantly different in fallers compared to non-fallers (p=0.537 and p=0.431, respectively). However, four square step test was significantly different between the populations (p= 0.045). Conclusions: These results showed that four square step test may be more closely related to falls than step length or latency. When performing fall prevention training, or working with an individual at risk for falling, it may be more beneficial to focus on four square step test and the changes in direction associated with it, as opposed to other stepping characteristics in order to improve their fall risk.
ContributorsPreschler, Rachael (Author) / Peterson, Daniel (Thesis director) / Schaefer, Sydney (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The genetic disorder Down syndrome (DS), clinically known as Trisomy 21, is characterized by the presence of either a part or full extra copy of chromosome 21. When compared with children of typical development, children with DS consistently score lower on gross motor skill tasks. Balance specifically is one of

The genetic disorder Down syndrome (DS), clinically known as Trisomy 21, is characterized by the presence of either a part or full extra copy of chromosome 21. When compared with children of typical development, children with DS consistently score lower on gross motor skill tasks. Balance specifically is one of the hardest skills for individuals with DS (especially children) to acquire, and neglecting to train balance early on can predispose individuals with DS to further movement instabilities, injuries, social struggles from activity limitations, and an overall lack of independence. One of the more unique forms of physical activity that requires a large amount of both static and dynamic balance is ballet. Dance-specific therapy has been shown to improve gross motor control functioning and specifically balance in a variety of populations with neuromuscular condions, but the research around ballet-specific therapy for those with DS is lacking. The purpose of this pilot study was to further investigate the effects of ballet-specific training on balance ability and general motor functioning in young students with DS as measured by the Four Square Step Test (FSST), Pediatric Balance Scale (PBS), and the gross and fine motor domains of the Vineland Adaptive Behavior Scale lll (VABS lll). It was hypothesized that participation in the 6-week summer cohort of Ballet Arizona’s Adaptive Dance Program would lead to improved scores on the PBS and VABS lll and decreased test times in the FSST. Improvements were observed for all measures for both participants (sample size n=2), except for P1's FSST, which increased in post-testing by 2.25s. Due to the study design, no conclusive statements can be made about whether the ballet program was responsible for the improvements observed in post-testing. More rigorous research with larger sample sizes (>30) is warranted to more fully understand the impact of an adapted ballet program on the balance ability of young individuals with DS. However, the program is still recommended for young individuals with DS because of the benefits it provides outside of motor skill development.
ContributorsMitrovic, Jelena (Author) / Peterson, Daniel (Thesis director) / Holzapfel, Simon (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-12
171433-Thumbnail Image.png
Description
The relationship between ischemic preconditioning and performance measures in able-bodied athletic populations have been thoroughly studied within the literature and demonstrated significant performance improvements. However, there is currently only one human study investigating how IPC can impact performance measures in individuals with a spinal cord injury (SCI). The mechanism that

The relationship between ischemic preconditioning and performance measures in able-bodied athletic populations have been thoroughly studied within the literature and demonstrated significant performance improvements. However, there is currently only one human study investigating how IPC can impact performance measures in individuals with a spinal cord injury (SCI). The mechanism that influences these performance improvements is still not fully understood. The purpose of this study was to investigate the effects of IPC in this population on performance measures, muscular force, and neural contribution. This study utilized 4 participants who have experienced a SCI. The study design was a repeated-measures, cross-over model. It consisted of an IPC (220mmHg) and SHAM (20mmHg) condition in random order. Functional measures of skeletal muscle force and neural measures with surface electromyography were recorded. The performance measures were maximum voluntary contractions (MVC) of the forearm muscles and a time to task failure (TTF) handgrip test. Results: IPC did not improve performance output between both conditions in a TTF handgrip test (IPC: 25.295±10.371 mins; SHAM: 20.958±7.621 mins). IPC did not improve muscular force recorded as MVC (IPC: 571.38 241.83 N; SHAM: 543.32±210.89 N). IPC did not improve neural recruitment suggested in root mean square (RMS) values during the TTF handgrip test in both measured muscles, the flexor carpi radialis (FCR) and the flexor carpi ulnaris (FCU), (FCR RMS: p = 0.564; FCU RMS: p = 0.863). More data is need for statistical relevance and to determine if there is a relationship between IPC and performance in individuals who have experienced a SCI, and if neural contribution plays a role.
ContributorsKasofsky, Lexi (Author) / Siegler, Jason (Thesis advisor) / Williams, Candyce (Committee member) / Peterson, Daniel (Committee member) / Holzapfel, Simon (Committee member) / Arizona State University (Publisher)
Created2022