Matching Items (19)
150955-Thumbnail Image.png
Description
Front end planning (FEP) is an essential and valuable process that helps identify risks early in the capital project planning phases. With effective FEP, risks can potentially be mitigated through development of detailed scope definition and subsequent efficient project resource use. The thesis describes the FEP process that has been

Front end planning (FEP) is an essential and valuable process that helps identify risks early in the capital project planning phases. With effective FEP, risks can potentially be mitigated through development of detailed scope definition and subsequent efficient project resource use. The thesis describes the FEP process that has been developed over the past twenty years by the Construction Industry Institute (CII). Specifically, it details the FEP tools developed for early project planning and the data gathered to analyze the tools used within the CII community. Data from a March 2011 survey are given showing the tools commonly used, how those tools are used and the common barriers faced that prohibit successful FEP implementation. The findings from in-depth interviews are also shared in the thesis. The interviews were used to gather detail responses from organizations on the implementation of their FEP processes. In total, out of the 116 CII organizations, 59 completed the survey and over 75 percent of the respondents used at least one CII tool in their front end planning processes. Of the 59 survey respondents, 12 organizations participated in the in-depth interviews. The thesis concludes that CII organizations continue to find value in CII FEP tools due to the increase tool usage. Also the thesis concludes that organizations must have strong management commitment, smart succession planning and a standardized planning process to increase the likelihood of successful FEP strategies.
ContributorsBosfield, Roberta Patrice (Author) / Gibson, G.Edward (Thesis advisor) / Wiezel, Avi (Committee member) / Ernzen, James (Committee member) / Arizona State University (Publisher)
Created2012
149444-Thumbnail Image.png
Description
The construction industry is becoming more aware of its impact on the environment. It has become more sensitive to how it operates and how it can reduce the carbon footprint of the construction process. This research identifies the source of and quantities of the carbon emissions created by an operating

The construction industry is becoming more aware of its impact on the environment. It has become more sensitive to how it operates and how it can reduce the carbon footprint of the construction process. This research identifies the source of and quantities of the carbon emissions created by an operating modular home fabrication plant in producing, transporting and installing modular structures. This study demonstrates how to measure the carbon footprint created in the production of a modular home. It quantifies and reports the results on a home, on a single module and on a per square foot basis. The primary conclusions of this study are: a) electricity was found to be the largest energy source used in this fabrication process; b) the modular fabrication process consumes a significant amount of electrical energy per month; c) production volume has a bearing on the carbon footprint of each home since the carbon footprint for each period is allocated to every home produced in that period; and d) transportation of fabricated modules and set-up add to the carbon footprint. Further, a carbon calculator was produced and is included with the study. The tool calculates the impact of energy consumption on the carbon footprint of a modular factory or a modular home. It may be expanded to other process driven fabrication entities. This research is valuable to developers and builders who wish to measure the carbon impact of a modular new home delivery system. The study also provides a methodology for modular home fabricators to measure the carbon footprint of their factories and factory production.
ContributorsKawecki, Leonard Robert (Author) / Bashford, Howard H (Thesis advisor) / Davis, Joseph (Committee member) / Ernzen, James (Committee member) / Arizona State University (Publisher)
Created2010
133728-Thumbnail Image.png
Description
The loading provisions were compared between the ASCE 7-10 standard and ASCE 7-16 standard. Two different structural models were considered: an office building with a flat roof located in Tempe and a community center with a gable roof located in Flagstaff. The following load types were considered: dead, live, wind,

The loading provisions were compared between the ASCE 7-10 standard and ASCE 7-16 standard. Two different structural models were considered: an office building with a flat roof located in Tempe and a community center with a gable roof located in Flagstaff. The following load types were considered: dead, live, wind, and snow loads. The only major changes between the standards were found in the wind load calculations. The winds loads were reduced by approximately 22% for the office building in Tempe and 37% for the community center in Flagstaff. A structural design was completed for the frame of the Flagstaff community building. There was a 19% reduction in cost from the design using ASCE 7-10 provisions compared to the design utilizing ASCE 7-16 provisions, leading to a saving of $7,599.17. The reduction in loading, and subsequently more cost-effective design, is attributed to the reduction in basic wind speed for the region and consideration of the ground elevation factor. The introduction of the new ASCE 7-16 standard was met with criticism, especially over the increase in specific coefficients in the wind load and seismic load chapters. Proponents of ASCE 7-16 boast that the new chapter on tsunami loads, new maps for various environmental loads, and a new electronic hazard are some of the merits of the newest standard. Others still question whether the complexity of the provisions is necessary and call for further improvements for the wind and seismic provisions. While tension exists in the desire for a simple standard, ASCE 7-16 prioritizes in having its provisions provide economical and reliable results. More consideration could be devoted to developing a more convenient standard for users. Regardless, engineering professionals should be able to adapt alongside newly developed practices and newly discovered data.
ContributorsCajegas, Cyam Joshua Dato (Author) / Rajan, Subramaniam (Thesis director) / Neithalath, Narayanan (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133576-Thumbnail Image.png
Description
Consumers purchase point-of-use (POU) devices to further improve the quality of water provided by the tap. As awareness increases of harmful contaminants, an emerging market of advanced POU with claims of removing beyond what a typical activated carbon filter is capable of, such as heavy metals. This research compares four

Consumers purchase point-of-use (POU) devices to further improve the quality of water provided by the tap. As awareness increases of harmful contaminants, an emerging market of advanced POU with claims of removing beyond what a typical activated carbon filter is capable of, such as heavy metals. This research compares four commercially available pitcher filters; two that claim to remove arsenic and hexavalent chromium and two without such claims. Arsenate (As (V)) and hexavalent chromium (Cr (VI)) co-occur in natural geologic formations and are known to have harmful effects on humans when ingested. Pitcher filters Epic Water Filter and Aquagear had claims of removing both As (V) and Cr (VI) up to 99% with a capacity of nearly 200 gallons. In contrast, pitcher filters Brita and Pur had no claims for removal of As(V) and Cr(VI) with a 40-gallon lifespan. A series of experiments were conducted to first determine the efficiency of each filter, then to add the ability or improve removal of As(V) and Cr(VI) in one filter for future design implementations. Experiment 1 was conducted by treating 100 gallons of spiked tap water (50 ppb for As (V) and 100 ppb for Cr (VI)) with each filter. All four pitcher filters showed low performance, resulting in Pur with the lowest removal percentage of 2% and Aquagear with the highest percentage 16% for As (V). For Cr (VI) Pur performed the worst with a removal of 5% and Brita had the best performance of 15%. The functionality of Brita was improved by embedding a selective ion exchange media, which when nanotized successfully removed Cr (VI) in previous studies. The optimal mass of resin to add to the pitcher was experimentally determined as 18.9 grams through Experiment 2. Finally, Experiment 3 compared an alternative placement of the resin material using the same 18.9 grams. The performance in Experiment 3 was significantly worse than Experiment 2. The final recommendation for future design implementation was to add 18.9 grams of SIR-700 resin below the filter media for optimum performance. Overall, the results demonstrate the limited removal of As(V) and Cr(VI) by the four commercial pitcher filters and show that by adding selective ion exchange media, the POUs can be nano-enabled to effectively remove As(V) and Cr(VI) from water.
ContributorsDietrich, Lisa Keri (Author) / Westerhoff, Paul (Thesis director) / Perreault, Francois (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Asphalt pavements deteriorate over time and are subjected to various distresses like rutting, fatigue cracking, stripping, raveling, etc. In this study, an experiment to indirectly assess aggregate stripping was completed in order to evaluate the effect of type of binder, and aging on the binder-aggregate bond under dry conditioning. The

Asphalt pavements deteriorate over time and are subjected to various distresses like rutting, fatigue cracking, stripping, raveling, etc. In this study, an experiment to indirectly assess aggregate stripping was completed in order to evaluate the effect of type of binder, and aging on the binder-aggregate bond under dry conditioning. The asphalts used in the study are commonly used in the state of Arizona, which included both non-polymer modified and polymer modified asphalts. The phenomenon of stripping was simulated using the Bitumen Bond Strength Test (BBS) and evaluated for Arizona binders. The BBS test is a simple test that measures the "pull-off" tensile strength of the bond between asphalt and the aggregate. Polymer modified binders were found to have lower pull-off strength in comparison to the non-modified or neat binder which were found to possess greater pull-off strength, but lower elasticity, causing the failure to become brittle and spontaneous. However, when aged binder was used, the bond strength expectedly reduced for non-polymer modified asphalts but surprisingly increased for polymer modified asphalts. Both un-aged neat and polymer modified binders were observed to have a cohesive failure whereas only the aged polymer modified binders failed in cohesion. The aged non-polymer modified binders were seen to have an adhesive failure.
ContributorsPonce, Esai Jonathon (Author) / Kaloush, Kamil (Thesis director) / Gundla, Akshay (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This paper introduces an excel tool created to improve the accuracy of electrical subcontracting prices for solar photovoltaic energy systems while also minimizing the time needed to create these price estimations. The need for improved precision, specifically during the early stages of a project, is examined and the paper also

This paper introduces an excel tool created to improve the accuracy of electrical subcontracting prices for solar photovoltaic energy systems while also minimizing the time needed to create these price estimations. The need for improved precision, specifically during the early stages of a project, is examined and the paper also goes into detail about the components and pricing method that are incorporated into the excel tool. Lastly, the results of the price estimation tool are compared to real bids and recommendations are made for improvement to the tool.
ContributorsJohnson, Eric Allen (Author) / Fraser, Matthew (Thesis director) / Hjelmstad, Keith (Committee member) / Hughes, Jeff (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134036-Thumbnail Image.png
Description
Midwestern cities are in decline, with shrinking populations and corresponding disinvestment. Many organizations and city governments are working on addressing the problem of vacancy while bringing these urban areas into the global economy. The EcoBlock Organization (EBO), a St. Louis-based non-profit, proposes block-level redevelopment as a method of fostering community

Midwestern cities are in decline, with shrinking populations and corresponding disinvestment. Many organizations and city governments are working on addressing the problem of vacancy while bringing these urban areas into the global economy. The EcoBlock Organization (EBO), a St. Louis-based non-profit, proposes block-level redevelopment as a method of fostering community and economic development while minimizing the impact on the environment. The EcoCode is a block-level form-based code describing the vision of the EBO and its implementation. This vision is centered around eight key design principles: energy, public health, social, urban design, water, transportation, resilience, and landscape. It manifests as an EcoBlock: a block of buildings surrounding a shared green space, connected by an energy grid and a shared geothermal loop with the goal of net-zero energy. The residences are a mix of building types for a variety of incomes and some building space will be designated for shared use, all physically reflecting the historic design of houses in the city in which the EcoBlock is implemented. Specifications like design, building placement, and mechanisms by which to strive towards net-zero energy and water will be determined in each location in which the EcoBlock is developed. The EcoCode describes the process and the desired outcome, providing a framework for this implementation.
The EcoCode resembles a typical form-based code in structure, but at a smaller geographic scale. General Provisions describes the context of the surrounding area that must be assessed before choosing to create an EcoBlock. Development and Adoption strategy explains the evolving role of the EBO and how the realization of this design is currently envisioned. Regulating Block, Block Development Standards, Building Envelope Standards, and Building Development Standards describe the detail that will need to be developed for the physical aspects of each block. Streetscape Standards describe the vision of the EBO as applicable to the streets surrounding an EcoBlock. Finally, the Sustainability Standards contain the contribution of each board member of the EBO with their unique expertise on implementing the design principles.
As a supplement to The EcoCode itself, this document contains three topics for case studies looking into the feasibility of the EcoBlock as a whole: shared space, net-zero energy, and mixed-income housing. Shared space development and management uses Montgomery Park in Boston to show the potential of community-based organization while warning against gentrification. The West Village campus of the University of California in Davis shows the technical possibility and the financial challenges of a net-zero community. Brogården, an affordable housing community in Sweden, demonstrates the possibility for decreasing energy consumption in public housing. Finally, Via Verde in New York City is an example of combining health, green space, and affordability in a mixed-income housing development. Though there is not yet an example of a fully implemented EcoBlock, these case studies speak to the challenges and the facilitators that the EBO will likely face.
ContributorsJohn, Raveena Susan (Author) / Allenby, Braden (Thesis director) / Redman, Charles (Committee member) / Garcia, Margaret (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133978-Thumbnail Image.png
Description
Arizona's transportation infrastructure is in need of an update. The American Society of Civil Engineers (ASCE) State Infrastructure 2017 Report Card scores Arizona's roads at a D+ and Arizona's bridges at a B. These grades are indicative that the serviceability levels of the roads and bridges are less than adequate.

Arizona's transportation infrastructure is in need of an update. The American Society of Civil Engineers (ASCE) State Infrastructure 2017 Report Card scores Arizona's roads at a D+ and Arizona's bridges at a B. These grades are indicative that the serviceability levels of the roads and bridges are less than adequate. These grades may seem tolerable in light of a national bridge C+ grade and a national road D grade, but the real problem lies in Arizona's existing funding gap that is in danger of exponentially increasing in the future. With an influx of vehicles on Arizona's roads and bridges, the cost of building, repairing, and maintaining them will grow and cause a problematic funding shortage. This report explores the current state of Arizona's roads and bridges as well as the policy and funding sources behind them, using statistics from the ASCE infrastructure report card and the Federal Highway Administration. Additionally, it discusses how regular, preventative maintenance for transportation infrastructure is the economically responsible choice for the state because it decreases delays and fuel expenses, prevents possible catastrophes, and increases human safety. To prioritize preventative transportation infrastructure maintenance, the common mentality that allows it to be sidelined for more newsworthy projects needs to be changed. Along with gaining preventative maintenance revenues through increasing vehicular taxes and fees, encouraging transportation policymakers and politicians to make economic decisions in favor of maintenance rather than waiting until failure is a reliable way to encourage regular, preventative maintenance.
ContributorsBurdett, Courtney (Author) / Hjelmstad, Keith (Thesis director) / Pendyala, Ram (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133309-Thumbnail Image.jpg
Description
Using the Arizona State University chapter of American Concrete Institute (ACI) as my platform, I recently teamed up with several generous companies to donate a new picnic slab and sidewalks to St. Vincent de Paul Elementary School's playground. Material/labor donations from Suntec Concrete, Arizona Materials, Salt River Materials Group, and

Using the Arizona State University chapter of American Concrete Institute (ACI) as my platform, I recently teamed up with several generous companies to donate a new picnic slab and sidewalks to St. Vincent de Paul Elementary School's playground. Material/labor donations from Suntec Concrete, Arizona Materials, Salt River Materials Group, and Dickens Quality Demolition made it possible to complete this project over the course of two Saturdays and at no cost for the school. In addition to the children of St. Vincent de Paul's benefit, this project also gave ASU and MCC students the opportunity to work in the field with industry professionals and gain hands-on experience. Over 20 students were able to witness and participate in demolition, formwork, concrete placement (including a laser screed appearance provided by Suntec), finishing, sawcutting, and more. As for specifics, the project featured a 19' x 40' picnic slab, as well as two 6' wide sidewalks connecting the slab to the playground and the playground to the adjacent access road. Once the second sidewalk reached the access road, it continued to the classrooms with 6' wide ramps on each side for truck accessibility. My role in this project was essentially a superintendent. I served as the primary point of contact for all parties involved, organized the material and labor donations, coordinated the project schedule, and kept all companies informed of the schedule to ensure proper execution and avoid delays. Due to various unavoidable conditions (cold weather, shade on the slab, etc.), I was also forced to make a few critical decisions as the project progressed.
ContributorsTwichell, Bennett (Author) / Ernzen, James (Thesis director) / Standage, Richard (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134108-Thumbnail Image.png
Description
This project is focused on local scale sustainability. The goal is to understand the impact of small unsustainable actions of people, and hopefully create a change in their habits. The focus was plastic usage, such as the use of water bottles, grocery bags, or even the packaging that our food

This project is focused on local scale sustainability. The goal is to understand the impact of small unsustainable actions of people, and hopefully create a change in their habits. The focus was plastic usage, such as the use of water bottles, grocery bags, or even the packaging that our food and other products typically come in. Plastic has become an integral part of lives, where we do not even think of our actions as we stuff our leftover grocery bags in its designated drawer. My goal throughout this project was to guide people to an environmentally conscious lifestyle by increasing the likelihood of recycling on the ASU campus. I created an interactive informative presentation that focused on recycling and preventing plastic and unwanted trash from ending up in landfills and oceans. The presentation was given to a small group of participants along with two surveys. There was a survey provided before the presentation to gauge a participant's present recycling habits then there was a survey that was given some time after the presentation to track if certain recycling habits had changed due to the presentation. The post presentation survey did report that there were changes to some of the participants' recycling habits. The research provides suggestions to help increase recycling and waste prevention based off surveys that were widely distributed on campus. The top three suggestions that would help make recycling more prevalent on campus are: education on the subject, more accessibility to recycling bins, and creating an incentive program.
ContributorsVazquez, Juliana Evone (Author) / Parrish, Kristen (Thesis director) / Burke, Rebekah (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12