Matching Items (55)
131407-Thumbnail Image.png
Description
There are two main sections of this thesis: Codebook development and case coding. Over the course of my two years of involvement with the collaborative governance lab with Drs. Schoon and Carr Kelman, I worked on helping to complete the coding manual built by the lab to test variables from

There are two main sections of this thesis: Codebook development and case coding. Over the course of my two years of involvement with the collaborative governance lab with Drs. Schoon and Carr Kelman, I worked on helping to complete the coding manual built by the lab to test variables from the literature using case studies. My main deliverable was building a Qualtrics survey to collect case studies. Using this Qualtrics survey, the lab will be able to collect coded cases by distributing the survey link through research networks. My thesis project included building the interface for the survey, participating in testing the intercoder reliability of the codebook, and coding one case, the Four Forest Restoration Initiative (4FRI), to provide insight on the collaborative governance strategies of this collaboration. Coding 4FRI also acted as a preliminary test of the survey, helping to provide further information on how users of the codebook might interact with the survey, and allowing the lab to generate a test report of survey results.
ContributorsGoddard, Kevin W (Author) / Carr Kelman, Candice (Thesis director) / Childers, Daniel (Committee member) / School of Sustainability (Contributor, Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131199-Thumbnail Image.png
Description
The experiments conducted in this report supported previous evidence (Bethany et al., 2019) that a newly identified predatory bacterium causes a higher rate of mortality in the biological soil crust cyanobacterium M. vaginatus when in hot soils than in cold soils. I predicted that the extracellular propagules of this predatory

The experiments conducted in this report supported previous evidence (Bethany et al., 2019) that a newly identified predatory bacterium causes a higher rate of mortality in the biological soil crust cyanobacterium M. vaginatus when in hot soils than in cold soils. I predicted that the extracellular propagules of this predatory bacterium were inactivated at seasonally low temperatures, rendering them non-viable when introduced to M. vaginatus at room temperature. However, I found that the predatory bacterium became only transiently inactive at low temperatures, recovering its pathogenicity when later exposed to warmer temperatures. By contrast, inactivation of infectivity was complete by exposure in both liquid and dry conditions for five days at 40 °C. I also expected that its infectivity towards M. vaginatus was temperature dependent. Indeed, infection was hampered and did not cause high mortality when predator and prey were incubated at or below 10 °C, which could have been due to slowed metabolisms of M. vaginatus or to an inability of the predatory bacterium to attack in cold conditions. Above 10 °C, when M. vaginatus grew faster, time to full death of predator/prey incubations correlated with the rate of growth of healthy cultures.
The experiments in this study observed a correlation between the growth rate of uninfected cultures and the decay rate of infected cultures, meaning that temperatures that cultures that displayed a higher growth rate for uninfected M. vaginatus would die faster when infected with the predatory bacterium. Infected cultures that were incubated at temperatures 4 and 10 °C did not display death and this could have been due to lower activity of M. vaginatus at lower temperatures or the inability for the predatory bacterium to attack at lower temperatures.
ContributorsAhamed, Anisa Nour (Author) / Garcia-Pichel, Ferran (Thesis director) / Giraldo Silva, Ana Maria (Committee member) / Bethany Rakes, Julie (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132538-Thumbnail Image.png
Description
Constructed treatment wetlands (CTW) are being increasingly utilized in urbanized areas as a cost-effective and environmentally-friendly method for treating wastewater. CTWs can be especially useful for urban areas in aridland environments because they facilitate the reuse of water during water shortages. In my study, I determined the rates

Constructed treatment wetlands (CTW) are being increasingly utilized in urbanized areas as a cost-effective and environmentally-friendly method for treating wastewater. CTWs can be especially useful for urban areas in aridland environments because they facilitate the reuse of water during water shortages. In my study, I determined the rates at which the aboveground and belowground emergent macrophytes sequestered nitrogen in a 42 ha aridland CTW in Phoenix, Arizona, USA. To do so, I measured foliar nitrogen content in aboveground and belowground biomass of three plant species groups (Typha latifolia + Typha domingensis, Schoenoplectus acutus + Schoenoplectus tabernaemontani, and Schoenoplectus californicus). Using these data, I calculated aboveground and belowground nitrogen budgets for the three species groups annually from 2011 to 2018.

Aboveground nitrogen content showed a maximum in 2011, decreasing until 2015, increasing again until 2017, and dropping in 2018; belowground nitrogen content showed the opposite temporal trend. Because foliar nitrogen content was assumed to be relatively constant over time, my data suggested that belowground nitrogen content increased between 2011 and 2015 and decreased between 2015 and 2017. Aboveground nitrogen content underwent fluctuations due to fluctuations in aboveground biomass. This occurred due to ‘thatching’, or events of widespread toppling of large macrophyte stands. The ratio of aboveground to belowground biomass can vary widely in the same CTW. My findings suggested that managing senesced aboveground plant material in CTWs may optimize the CTW’s ability to sequester nitrogen. Further research is needed to determine the best management strategies, as well as its possible implications.
ContributorsCrane, Austin Matthew (Author) / Childers, Daniel (Thesis director) / Sanchez, Christopher (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131264-Thumbnail Image.png
Description
Freshwater ecosystems are increasingly threatened by anthropogenic eutrophication (Kolzau et al., 2014) and require mitigation efforts to prevent oxygen depletion and subsequent biodiversity loss. Tres Rios Constructed Treatment Wetland (CTW) relies on wetland ecosystem functioning to reduce nutrient concentrations in order to meet regulatory guidelines. I investigated the impact of

Freshwater ecosystems are increasingly threatened by anthropogenic eutrophication (Kolzau et al., 2014) and require mitigation efforts to prevent oxygen depletion and subsequent biodiversity loss. Tres Rios Constructed Treatment Wetland (CTW) relies on wetland ecosystem functioning to reduce nutrient concentrations in order to meet regulatory guidelines. I investigated the impact of solar irradiance, temperature, and nutrient availability on aquatic net primary productivity, ecosystem respiration, and nutrient cycling using statistical analysis and quantitative modeling informed by field data generated by ASU’s Wetland Ecosystem Ecology Lab (WEEL) in partnership with the City of Phoenix Water Services Department. I found that the extent of daily solar insolation controls Aquatic Net Primary Productivity (ANPP) rates and the seasonal aquatic nutrient processing capacity of Tres Rios, resulting in the following approximate relationship: ANPP = 0.001344(W/m²) - 0.32634 (r² = 0.259; p = 0.005).

This formula was used to estimate the nutrient uptake performance of aquatic primary producers from sampling observations; ANPP accounted for 16.26 metric tons of system wide N uptake, while aquatic ER contributed 6.07 metric tons N of nighttime remineralization and 5.7 metric tons of N throughout the water column during the day. The estimated yearly net aquatic N flux is 4.49 metric tons uptake, compared to about 12 metric tons yearly N uptake by the vegetated marsh (Treese, 2019). However, not accounting for animal respiration results in an underestimation of system-wide N remineralization, and not accounting for soil processes results in an underestimation of N uptake.
ContributorsEvans, Joseph Barrett (Author) / Childers, Daniel (Thesis director) / Hartnett, Hilairy (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133645-Thumbnail Image.png
Description
Animal psychology is the study of how animals interact with one another, their environment, and with humans. This can be done in two different settings, the wild and captivity, and through two different approaches, academic research and practice. Academic research relies primarily on behavioral observation for data collection. Practice uses

Animal psychology is the study of how animals interact with one another, their environment, and with humans. This can be done in two different settings, the wild and captivity, and through two different approaches, academic research and practice. Academic research relies primarily on behavioral observation for data collection. Practice uses behavioral observation as well, but allows for a more hands on experience and lets the practitioner make improvements in the quality of life. I interviewed two people, one who practices in captivity, and one who does research in the wild. Dr. David Bunn has done research on wild animals in Kruger National Park in South Africa for over twenty years, studying human-animal interactions. Hilda Tresz has worked in zoos nearly forty years and specializes in chimps. Working within the same field, but utilizing a different setting and approach makes a big difference in the feel of the job. Though I found many differences between the two by doing my own research and from conducting interviews, there are many similarities to note as well. The general field of animal psychology is very rewarding, requires a lot of patience, and leads to a better understanding of animal behavior and how to care for specific species of animals. Working with captive animals allows for the opportunity to make a big difference in animal's lives through behavioral enrichment and general care. Working in the wild allows us to understand the innate animal behaviors displayed. Through practice, people get more hands on experience; while through research, you get to observe animals in their native habitats. Each setting and approach has it's own benefits depending on what each person's goals are for their job.
ContributorsDaniel, Mckenna Lynne (Author) / Childers, Daniel (Thesis director) / Hall, Sharon (Committee member) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133253-Thumbnail Image.png
Description
Elevated nitrate (NO3-) concentration in streams and rivers has contributed to environmental problems such as downstream eutrophication and loss of biodiversity. Sycamore Creek in Arizona is nitrogen limited, but previous studies have demonstrated high potential for denitrification, a microbial process in which biologically active NO3- is reduced to relatively inert

Elevated nitrate (NO3-) concentration in streams and rivers has contributed to environmental problems such as downstream eutrophication and loss of biodiversity. Sycamore Creek in Arizona is nitrogen limited, but previous studies have demonstrated high potential for denitrification, a microbial process in which biologically active NO3- is reduced to relatively inert dinitrogen (N2) gas. Oak Creek is similarly nitrogen limited, but NO3- concentration in reaches surrounded by agriculture can be double that of other reaches. We employed a denitrification enzyme assay (DEA) to compare potential denitrification rate between differing land uses in Oak Creek and measured whole system N2 flux using a membrane inlet mass spectrometer to compare differences in actual denitrification rates at Sycamore and Oak Creek. We anticipated that NO3- would be an important limiting factor for denitrifiers; consequentially, agricultural land use reaches within Oak Creek would have the highest potential denitrification rate. We expected in situ denitrification rate to be higher in Oak Creek than Sycamore Creek due to elevated NO3- concentration, higher discharge, and larger streambed surface area. DEA results are forthcoming, but analysis of potassium chloride (KCl) extraction data showed that there were no significant differences between sites in sediment extractable NO3- on either a dry mass or organic mass basis. Whole-reach denitrification rate was inconclusive in Oak Creek, and though a significant positive flux in N2 from upstream to downstream was measured in Sycamore Creek, the denitrification rate was not significantly different from 0 after accounting for reaeration, suggesting that denitrification does not account for a significant portion of the NO3- uptake in Sycamore Creek. Future work is needed to address the specific factors limiting denitrification in this system.
ContributorsCaulkins, Corey Robert (Author) / Grimm, Nancy (Thesis director) / Childers, Daniel (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
171761-Thumbnail Image.png
Description
The oceanic biological carbon pump is a key component of the global carbon cycle in which dissolved carbon dioxide is taken up by phytoplankton during photosynthesis, a fraction of which then sinks to depth and contributes to oceanic carbon storage. The small-celled phytoplankton (<5 µm) that dominate the phytoplankton community

The oceanic biological carbon pump is a key component of the global carbon cycle in which dissolved carbon dioxide is taken up by phytoplankton during photosynthesis, a fraction of which then sinks to depth and contributes to oceanic carbon storage. The small-celled phytoplankton (<5 µm) that dominate the phytoplankton community in oligotrophic oceans have traditionally been viewed as contributing little to export production due to their small size. However, recent studies have shown that the picocyanobacterium Synechococcus produces transparent exopolymer particles (TEP), the sticky matrix of marine aggregates, and forms abundant microaggregates (5-60 µm), which is enhanced under nutrient limited growth conditions. Whether other small phytoplankton species exude TEP and form microaggregates, and if these are enhanced under growth-limiting conditions remains to be investigated. This study aims to analyze how nutrient limitation affects TEP production and microaggregate formation of species that are found to be associated with sinking particles in the Sargasso Sea. The pico-cyanobacterium Prochlorococcus marinus (0.8 µm), the nano-diatom Minutocellus polymorphus (2 µm), and the pico-prasinophyte Ostreococcus lucimarinus (0.6 µm) were grown in axenic batch culture experiments under nutrient replete and limited conditions. It was hypothesized that phytoplankton subject to nutrient limitation will aggregate more than those under replete conditions due to an increased exudation of TEP and that Minutocellus would produce the most TEP and microaggregates while Prochlorococcus would produce the least TEP and microaggregates of the three phytoplankton groups. As hypothesized, nutrient limitation increased TEP concentration in all three species, however they were only significant in nitrogen-limited treatments of Prochlorococcus as well as nitrogen- and phosphorus-limited treatments of Minutocellus. Formation of microaggregates was significantly enhanced in Minutocellus and Ostreococcus cultures in distinct microaggregate size ranges. Minutocellus produced the most TEP per cell and aggregated at higher volume concentrations compared to Prochlorococcus and Ostreococcus. Surprisingly, Ostreococcus produced more TEP than Prochlorococcus and Minutocellus per unit cell volume. These findings show for the first time how nutrient limited conditions enhance TEP production and microaggregation of Prochlorococcus, Minutocellus, and Ostreococcus, providing a mechanism for their incorporation into larger, sinking particles and contribution to export production in oligotrophic oceans.
ContributorsShurtleff, Catrina (Author) / Neuer, Susanne (Thesis advisor) / Lomas, Michael W. (Committee member) / Garcia-Pichel, Ferran (Committee member) / Arizona State University (Publisher)
Created2022
171775-Thumbnail Image.png
Description
Under current climate conditions northern peatlands mostly act as C sinks; however, changes in climate and environmental conditions, can change the soil carbon decomposition cascade, thus altering the sink status. Here I studied one of the most abundant northern peatland types, poor fen, situated along a climate gradient from tundra

Under current climate conditions northern peatlands mostly act as C sinks; however, changes in climate and environmental conditions, can change the soil carbon decomposition cascade, thus altering the sink status. Here I studied one of the most abundant northern peatland types, poor fen, situated along a climate gradient from tundra (Daring Lake, Canada) to boreal forest (Lutose, Canada) to temperate broadleaf and mixed forest (Bog Lake, MN and Chicago Bog, NY) biomes to assess patterns of microbial abundance across the climate gradient. Principal component regression analysis of the microbial community and environmental variables determined that mean annual temperature (MAT) (r2=0.85), mean annual precipitation (MAP) (r2=0.88), and soil temperature (r2=0.77), were the top significant drivers of microbial community composition (p < 0.001). Niche breadth analysis revealed the relative abundance of Intrasporangiaceae, Methanobacteriaceae and Candidatus Methanoflorentaceae fam. nov. to increase when MAT and MAP decrease. The same analysis showed Spirochaetaceae, Methanosaetaceae and Methanoregulaceae to increase in relative abundance when MAP, soil temperature and MAT increased, respectively. These findings indicated that climate variables were the strongest predictors of microbial community composition and that certain taxa, especially methanogenic families demonstrate distinct patterns across the climate gradient. To evaluate microbial production of methanogenic substrates, I carried out High Resolution-DNA-Stable Isotope Probing (HR-DNA-SIP) to evaluate the active portion of the community’s intermediary ecosystem metabolic processes. HR-DNA-SIP revealed several challenges in efficiency of labelling and statistical identification of responders, however families like Veillonellaceae, Magnetospirillaceae, Acidobacteriaceae 1, were found ubiquitously active in glucose amended incubations. Differences in metabolic byproducts from glucose amendments show distinct patterns in acetate and propionate accumulation across sites. Families like Spirochaetaceae and Sphingomonadaceae were only found to be active in select sites of propionate amended incubations. By-product analysis from propionate incubations indicate that the northernmost sites were acetate-accumulating communities. These results indicate that microbial communities found in poor fen northern peatlands are strongly influenced by climate variables predicted to change under current climate scenarios. I have identified patterns of relative abundance and activity of select microbial taxa, indicating the potential for climate variables to influence the metabolic pathway in which carbon moves through peatland systems.
ContributorsSarno, Analissa Flores (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Childers, Daniel (Committee member) / Arizona State University (Publisher)
Created2022
161966-Thumbnail Image.png
Description
The ability to find evidence of life on early Earth and other planets is constrained by the current understanding of biosignatures and our ability to differentiate fossils from abiotic mimics. When organisms transition from the living realm to the fossil record, their morphological and chemical characteristics are modified, usually resulting

The ability to find evidence of life on early Earth and other planets is constrained by the current understanding of biosignatures and our ability to differentiate fossils from abiotic mimics. When organisms transition from the living realm to the fossil record, their morphological and chemical characteristics are modified, usually resulting in the loss of information. These modifications can happen during early and late diagenesis and differ depending on local geochemical properties. These post-depositional modifications need to be understood to better interpret the fossil record. Siliceous hot spring deposits (sinters) are of particular interest for biosignature research as they are early Earth analog environments and targets for investigating the presence of fossil life on Mars. As silica-supersaturated fluids flow from the vent to the distal apron, they precipitate non-crystalline opal-A that fossilizes microbial communities at a range in scales (μm-cm). Therefore, many studies have documented the ties between the active microbial communities and the morphological and chemical biosignatures in hot springs. However, far less attention has been placed on understanding preservation in systems with complex mineralogy or how post-depositional alteration affects the retention of biosignatures. Without this context, it can be challenging to recognize biosignatures in ancient rocks. This dissertation research aims to refine our current understanding of biosignature preservation and retention in sinters. Biosignatures of interest include organic matter, microfossils, and biofabrics. The complex nature of hot springs requires a comprehensive understanding of biosignature preservation that is representative of variable chemistries and post-depositional alterations. For this reason, this dissertation research chapters are field site-based. Chapter 2 investigates biosignature preservation in an unusual spring with mixed opal-A-calcite mineralogy at Lýsuhóll, Iceland. Chapter 3 tracks how silica diagenesis modifies microfossil morphology and associated organic matter at Puchuldiza, Chile. Chapter 4 studies the effects of acid fumarolic overprinting on biosignatures in Gunnuhver, Iceland. To accomplish this, traditional geologic methods (mapping, petrography, X-ray diffraction, bulk elemental analyses) were combined with high-spatial-resolution elemental mapping to better understand diagenetic effects in these systems. Preservation models were developed to predict the types and styles of biosignatures that can be present depending on the depositional and geochemical context. Recommendations are also made for the types of deposits that are most likely to preserve biosignatures.
ContributorsJuarez Rivera, Marisol (Author) / Farmer, Jack D (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Shock, Everett (Committee member) / Garcia-Pichel, Ferran (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2021
168533-Thumbnail Image.png
Description
Predatory bacteria are a guild of heterotrophs that feed directly on other living bacteria. They belong to several bacterial lineages that evolved this mode of life independently and occur in many microbiomes and environments. Current knowledge of predatory bacteria is based on culture studies and simple detection in natural systems.

Predatory bacteria are a guild of heterotrophs that feed directly on other living bacteria. They belong to several bacterial lineages that evolved this mode of life independently and occur in many microbiomes and environments. Current knowledge of predatory bacteria is based on culture studies and simple detection in natural systems. The ecological consequences of their activity, unlike those of other populational loss factors like viral infection or grazing by protists, are yet to be assessed. During large-scale cultivation of biological soil crusts intended for arid soil rehabilitation, episodes of catastrophic failure were observed in cyanobacterial growth that could be ascribed to the action of an unknown predatory bacterium using bioassays. This predatory bacterium was also present in natural biocrust communities, where it formed clearings (plaques) up to 9 cm in diameter that were visible to the naked eye. Enrichment cultivation and purification by cell-sorting were used to obtain co-cultures of the predator with its cyanobacterial prey, as well as to identify and characterize it genomically, physiologically and ultrastructurally. A Bacteroidetes bacterium, unrelated to any known isolate at the family level, it is endobiotic, non-motile, obligately predatory, displays a complex life cycle and very unusual ultrastructure. Extracellular propagules are small (0.8-1.0 µm) Gram-negative cocci with internal two-membrane-bound compartmentalization. These gain entry to the prey likely using a suite of hydrolytic enzymes, localizing to the cyanobacterial cytoplasm, where growth begins into non-compartmentalized pseudofilaments that undergo secretion of vesicles and simultaneous multiple division to yield new propagules. I formally describe it as Candidatus Cyanoraptor togatus, hereafter Cyanoraptor. Its prey range is restricted to biocrust-forming, filamentous, non-heterocystous, gliding, bundle-making cyanobacteria. Molecular meta-analyses showed its worldwide distribution in biocrusts. Biogeochemical analyses of Cyanoraptor plaques revealed that it causes a complete loss of primary productivity, and significant decreases in other biocrusts properties such as water-retention and dust-trapping capacity. Extensive field surveys in the US Southwest revealed its ubiquity and its dispersal-limited, aggregated spatial distribution and incidence. Overall, its activity reduces biocrust productivity by 10% at the ecosystem scale. My research points to predatory bacteria as a significant, but overlooked, ecological force in shaping soil microbiomes.
ContributorsBethany Rakes, Julie Ann (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Gile, Gillian (Committee member) / Cao, Huansheng (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2022