Matching Items (210)
150056-Thumbnail Image.png
Description
Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological

Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological systems and exploit them for useful applications. In order to contribute to this efforts, the work presented in this dissertation focuses on the study of electrokinetic properties of liposomes and novel applications of bioaerosol analysis. Using immobilized lipid vesicles under the influence of modest (less than 100 V/cm) electric fields, a novel strategy for bionanotubule fabrication with superior throughput and simplicity was developed. Fluorescence and bright field microscopy was used to describe the formation of these bilayer-bound cylindrical structures, which have been previously identified in nature (playing crucial roles in intercellular communication) and made synthetically by direct mechanical manipulation of membranes. In the biological context, the results of this work suggest that mechanical electrostatic interaction may play a role in the shape and function of individual biological membranes and networks of membrane-bound structures. A second project involving liposomes focused on membrane potential measurements in vesicles containing trans-membrane pH gradients. These types of gradients consist of differential charge states in the lipid bilayer leaflets, which have been shown to greatly influence the efficacy of drug targeting and the treatment of diseases such as cancer. Here, these systems are qualitatively and quantitatively assessed by using voltage-sensitive membrane dyes and fluorescence spectroscopy. Bioaerosol studies involved exploring the feasibility of a fingerprinting technology based on current understanding of cellular debris in aerosols and arguments regarding sampling, sensitivity, separations and detection schemes of these debris. Aerosolized particles of cellular material and proteins emitted by humans, animals and plants can be considered information-rich packets that carry biochemical information specific to the living organisms present in the collection settings. These materials could potentially be exploited for identification purposes. Preliminary studies evaluated protein concentration trends in both indoor and outdoor locations. Results indicated that concentrations correlate to certain conditions of the collection environment (e.g. extent of human presence), supporting the idea that bioaerosol fingerprinting is possible.
ContributorsCastillo Gutiérrez, Josemar Andreina (Author) / Hayes, Mark A. (Thesis advisor) / Herckes, Pierre (Committee member) / Ghrilanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
147837-Thumbnail Image.png
Description

Human-environment interactions in aeolian (windblown) systems has focused research on<br/>human’s role in causing and aiding recovery from natural and anthropogenic disturbance. There<br/>is room for improvement in understanding the best methods and considerations for manual<br/>coastal foredune restoration. Furthermore, the extent to which humans play a role in changing the<br/>shape and surface

Human-environment interactions in aeolian (windblown) systems has focused research on<br/>human’s role in causing and aiding recovery from natural and anthropogenic disturbance. There<br/>is room for improvement in understanding the best methods and considerations for manual<br/>coastal foredune restoration. Furthermore, the extent to which humans play a role in changing the<br/>shape and surface textures of quartz sand grains is poorly understood. The goal of this thesis is<br/>two-fold: 1) quantify the geomorphic effectiveness of a multi-year manually rebuilt foredune and<br/>2) compare the shapes and microtextures on disturbed and undisturbed quartz sand grains. For<br/>the rebuilt foredune, uncrewed aerial systems (UAS) were used to survey the site, collecting<br/>photos to create digital surface models (DSMs). These DSMs were compared at discrete<br/>moments in time to create a sediment budget. Water levels and cross-shore modeling is also<br/>considered to predict the decadal evolution of the site. In the two years since rebuilding, the<br/>foredune has been stable, but not geomorphically resilient. Modeling shows landward foredune<br/>retreat and beach widening. For the quartz grains, t-testing of shape characteristics showed that<br/>there may be differences in the mean circularity between grains from off-highway vehicle and<br/>non-riding areas. Quartz grains from a variety of coastal and inland dunes were imaged using a<br/>scanning electron microscopy to search for evidence of anthropogenically-induced<br/>microtextures. On grains from Oceano Dunes in California, encouraging textures like parallel<br/>striations, grain fracturing, and linear conchoidal fractures provide exploratory evidence of<br/>anthropogenic microtextures. More focused research is recommended to confirm this exploratory<br/>work.

ContributorsMarvin, Michael Colin (Author) / Walker, Ian (Thesis director) / Dorn, Ron (Committee member) / Schmeeckle, Mark (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148161-Thumbnail Image.png
Description

Fire is a naturally-occurring disruptive ecological force that is an essential part of certain ecosystems, and has historically been a tool used by indigenous fire stewards to maintain the health of the land. In the past century, fire has been severely suppressed throughout many areas of the Western United States

Fire is a naturally-occurring disruptive ecological force that is an essential part of certain ecosystems, and has historically been a tool used by indigenous fire stewards to maintain the health of the land. In the past century, fire has been severely suppressed throughout many areas of the Western United States as Western colonization and the suppression of native traditional ecological knowledge took place, causing a severe decline in ecosystem health and the accumulation of flammable vegetation, which has more recently contributed towards a frequency of catastrophic, high-intensity wildfires. Current fire management challenges include balancing social and ecological perspectives. In Colorado and other areas of the country, community wildfire protection plans (CWPP) are evolving as a means to involve a variety of community stakeholders in fire management decisions. Using Colorado CWPP boundaries as a social management unit and endangered species ranges as an ecological management unit, I analyzed the spatial overlap of these different factors. Since each CWPP has its own fire management policies, I drew implications from the results for which important factors different CWPPs should consider.

ContributorsAzuma, Erin (Author) / Kroetz, Kailin (Thesis director) / Iacona, Gwen (Committee member) / Hamilton, Matthew (Committee member) / School of Life Sciences (Contributor) / Watts College of Public Service & Community Solut (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Thunderbird School of Global Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148162-Thumbnail Image.png
Description

Surveys have shown that several hundred billion weather forecasts are obtained by the United States public each year, and that weather news is one of the most consumed topics in the media. This indicates that the forecast provides information that is significant to the public, and that the public utilizes

Surveys have shown that several hundred billion weather forecasts are obtained by the United States public each year, and that weather news is one of the most consumed topics in the media. This indicates that the forecast provides information that is significant to the public, and that the public utilizes details associated with it to inform aspects of their life. Phoenix, Arizona is a dry, desert region that experiences a monsoon season and extreme heat. How then, does the weather forecast influence the way Phoenix residents make decisions? This paper aims to draw connections between the weather forecast, decision making, and people who live in a desert environment. To do this, a ten-minute survey was deployed through Amazon Mechanical Turk (MTurk) in which 379 respondents were targeted. The survey asks 45 multiple choice and ranking questions categorized into four sections: obtainment of the forecast, forecast variables of interest, informed decision making based on unique weather variables, and demographics. This research illuminates how residents in the Phoenix metropolitan area use the local weather forecast for decision-making on daily activities, and the main meteorological factors that drive those decisions.

ContributorsMarturano, Julia (Author) / Middel, Ariane (Thesis director) / Schneider, Florian (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148182-Thumbnail Image.png
Description

Globally, the incidental capture of non-target species in fisheries (bycatch) has been linked to declines of ecologically, economically, and culturally important marine species. Gillnet fisheries have especially high bycatch due to their non-selective nature, necessitating the development of new bycatch reduction technologies (BRTs). Net illumination is an emerging BRT that

Globally, the incidental capture of non-target species in fisheries (bycatch) has been linked to declines of ecologically, economically, and culturally important marine species. Gillnet fisheries have especially high bycatch due to their non-selective nature, necessitating the development of new bycatch reduction technologies (BRTs). Net illumination is an emerging BRT that has shown promise in reducing bycatch of marine megafauna, including sea turtles, cetaceans, and seabirds. However, little research has been conducted to understand the effects of net illumination on fish assemblages, including bony fish and elasmobranchs (i.e. sharks, rays, and skates). Here, I assessed a 7-year dataset of paired net illumination trials using four different types of light (green LEDs, green chemical glowsticks, ultraviolet (UV) lights, and orange lights) to examine the effects of net illumination on fish catch and bycatch in a gillnet fishery at Baja California Sur, Mexico. Analysis revealed no significant effect on bony fish target catch or bycatch for any light type. There was a significant decrease in elasmobranch bycatch using UV and orange lights, with orange lights showing the most promise for decreasing elasmobranch bycatch, resulting in a 50% reduction in bycatch rates. Analysis of the effects of net illumination on elasmobranch target catch was limited due to insufficient data. These results indicate that the illumination of gillnets may offer a practical solution for reducing fish bycatch while maintaining target catch. More research should be conducted to understand the effects of net illumination in different fisheries, how net illumination affects fisher profit and efficiency, and how net illumination affects fish behavior. Further optimization of net illumination is also necessary before the technology can be recommended on a broader scale.

ContributorsBurgher, Kayla Marie (Author) / Senko, Jesse (Thesis director) / Throop, Heather (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148217-Thumbnail Image.png
Description

The COVID-19 Pandemic has provided a challenge for educators to create virtual learning materials that are engaging and impactful during times of high stress and isolation. In this creative project, I explore the variety of virtual tools and web applications from Esri by creating a Story Map on the Verde

The COVID-19 Pandemic has provided a challenge for educators to create virtual learning materials that are engaging and impactful during times of high stress and isolation. In this creative project, I explore the variety of virtual tools and web applications from Esri by creating a Story Map on the Verde River Watershed. This Story Map is intended for an audience of students in late middle school and early high school but can be a resource to teachers for a wider age range. The integration of interactive technology and virtual tools in educational practices is likely to continue past the immediate circumstances of the COVID-19 pandemic. The purpose of this Story Map is to showcase one of the many uses for geospatial web applications beyond the immediate realm of GIS.

ContributorsTueller, Margaret (Author) / Frazier, Amy (Thesis director) / Dorn, Ron (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / Division of Teacher Preparation (Contributor) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149817-Thumbnail Image.png
Description
Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers,

Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers, onto quartz fiber substrates during a series of research cruises on the Atlantic Ocean. Samples were collected on board the R/V Endeavor on West–East (March–April, 2006) and East–West (June–July, 2006) transects in the North Atlantic, as well as on the R/V Polarstern during a North–South (October–November, 2005) transect along the western coast of Europe and Africa. The aerosol total carbon (TC) concentrations for the West–East (Narragansett, RI, USA to Nice, France) and East–West (Heraklion, Crete, Greece to Narragansett, RI, USA) transects were generally low over the open ocean (0.36±0.14 μg C/m3) and increased as the ship approached coastal areas (2.18±1.37 μg C/m3), due to increased terrestrial/anthropogenic aerosol inputs. The TC for the North–South transect samples decreased in the southern hemisphere with the exception of samples collected near the 15th parallel where calculations indicate the air mass back trajectories originated from the continent. Seasonal variation in organic carbon (OC) was seen in the northern hemisphere open ocean samples with average values of 0.45 μg/m3 and 0.26 μg/m3 for spring and summer, respectively. These low summer time values are consistent with SeaWiFS satellite images that show decreasing chlorophyll a concentration (a proxy for phytoplankton biomass) in the summer. There is also a statistically significant (p<0.05) decline in surface water fluorescence in the summer. Moreover, examination of water–soluble organic carbon (WSOC) shows that the summer aerosol samples appear to have a higher fraction of the lower molecular weight material, indicating that the samples may be more oxidized (aged). The seasonal variation in aerosol content seen during the two 2006 cruises is evidence that a primary biological marine source is a significant contributor to the carbonaceous particulate in the marine atmosphere and is consistent with previous studies of clean marine air masses.
ContributorsHill, Hansina Rae (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2011
150107-Thumbnail Image.png
Description
Titanium dioxide (TiO2) nanomaterial use is becoming more prevalent as is the likelihood of human exposure and environmental release. The goal of this thesis is to develop analytical techniques to quantify the level of TiO2 in complex matrices to support environmental, health, and safety research of TiO2 nanomaterials. A pharmacokinetic

Titanium dioxide (TiO2) nanomaterial use is becoming more prevalent as is the likelihood of human exposure and environmental release. The goal of this thesis is to develop analytical techniques to quantify the level of TiO2 in complex matrices to support environmental, health, and safety research of TiO2 nanomaterials. A pharmacokinetic model showed that the inhalation of TiO2 nanomaterials caused the highest amount to be absorbed and distributed throughout the body. Smaller nanomaterials (< 5nm) accumulated in the kidneys before clearance. Nanoparticles of 25 nm diameter accumulated in the liver and spleen and were cleared from the body slower than smaller nanomaterials. A digestion method using nitric acid, hydrofluoric acid, and hydrogen peroxide was found to digest organic materials and TiO2 with a recovery of >80%. The samples were measured by inductively coupled plasma-mass spectrometry (ICP-MS) and the method detection limit was 600 ng of Ti. An intratracheal instillation study of TiO2 nanomaterials in rats found anatase TiO2 nanoparticles in the caudal lung lobe of rats 1 day post instillation at a concentration of 1.2 ug/mg dry tissue, the highest deposition rate of any TiO2 nanomaterial. For all TiO2 nanomaterial morphologies the concentrations in the caudal lobes were significantly higher than those in the cranial lobes. In a study of TiO2 concentration in food products, white colored foods or foods with a hard outer shell had higher concentrations of TiO2. Hostess Powdered Donettes were found to have the highest Ti mass per serving with 200 mg Ti. As much as 3.8% of the total TiO2 mass was able to pass through a 0.45 um indicating that some of the TiO2 is likely nanosized. In a study of TiO2 concentrations in personal care products and paints, the concentration of TiO2 was as high as 117 ug/mg in Benjamin Moore white paint and 70 ug/mg in a Neutrogena sunscreen. Greater than 6% of Ti in one sunscreen was able to pass through a 0.45 um filter. The nanosized TiO2 in food products and personal care products may release as much as 16 mg of nanosized TiO2 per individual per day to wastewater.
ContributorsWeir, Alex Alan (Author) / Westerhoff, Paul K (Thesis advisor) / Hristovski, Kiril (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2011
137706-Thumbnail Image.png
Description
Despite similar climate, ecosystem, and population size, the cities of Hermosillo, Mexico and Mesa, USA manage their water very differently. Mesa has a stable and resilient system organized around state and federal regulations. Hermosillo, after rapidly industrializing, has not been able to cope with climate change and long-term drought conditions.

Despite similar climate, ecosystem, and population size, the cities of Hermosillo, Mexico and Mesa, USA manage their water very differently. Mesa has a stable and resilient system organized around state and federal regulations. Hermosillo, after rapidly industrializing, has not been able to cope with climate change and long-term drought conditions. Water distribution statistics, stakeholders, policy structure, and government organization were combined in an organizational framework to compare the practices of the two cities. These inputs were weighed against the outcomes and the sustainability of each system. While Mesa is part of a massive metropolitan area, Hermosillo is still developing into a metropolitan center and does not have access to the same infrastructure and resources. In Hermosillo local needs are frequently discounted in favor of broad political goals.
ContributorsMoe, Rud Lamb (Author) / Chhetri, Netra (Thesis director) / White, Dave (Committee member) / Robles-Morua, Agustin (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2013-05