Matching Items (28)
Filtering by

Clear all filters

149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
149920-Thumbnail Image.png
Description
This study addresses the landscape connectivity pattern at two different scales. The county-level analysis aims to understand how urban ecosystem structure is likely to evolve in response to the proposed development plans in Maricopa County, Arizona. To identify the spatio-temporal land pattern change, six key landscape metrics were quantified in

This study addresses the landscape connectivity pattern at two different scales. The county-level analysis aims to understand how urban ecosystem structure is likely to evolve in response to the proposed development plans in Maricopa County, Arizona. To identify the spatio-temporal land pattern change, six key landscape metrics were quantified in relative to the urban development scenarios based on the certainty of the proposed urban plans with different level of urban footprints. The effects of future development plans from municipalities on landscape connectivity were then analyzed in the scaled temporal and spatial frame to identify in which urban condition the connectivity value would most likely to decrease. The results demonstrated that tremendous amount of lands will be dedicated to future urbanization, and especially urban agricultural lands will be likely to be vulnerable. The metro-level analysis focuses on a group of species that represent urban desert landscape and have different degrees of fragmentation sensitivity and habitat type requirement. It hypothesizes that the urban habitat patch connectivity is impacted upon by urban density. Two underlying propositions were set: first, lower connectivity is predominant in areas with high urbanization cover; second, landscape connectivity will be impacted largely on the interfaces between urban, suburban, and rural areas. To test this, a GIS-based connectivity modeling was employed. The resultant change in connectivity values was examined for exploring the spatial relation to predefined spatial frames, such as urban, suburban, and rural zones of which boundaries were delineated by buffering method with two criteria of human population density and urban cover proportion. The study outcomes provide a practical guidance to minimize connectivity loss and degradation by informing planners with more optimal alternatives among various policy decisions and implementation. It also gives an inspiration for ecological landscape planning in urbanized or urbanizing regions which can ultimately leads urban landscape sustainability.
ContributorsPak, So-hyŏn (Author) / Cook, Edward (Thesis advisor) / Crewe, Katherine (Committee member) / Wu, Jianguo (Jingle) (Committee member) / Arizona State University (Publisher)
Created2011
149849-Thumbnail Image.png
Description
As a significant level of the reformation and transformation of our society has been provoked by environmental deterioration, ecological approaches in environmental design have drawn much attention from professionals as an alternative world view and also as a practical design approach. Particularly in landscape architecture, ecological understanding has been at

As a significant level of the reformation and transformation of our society has been provoked by environmental deterioration, ecological approaches in environmental design have drawn much attention from professionals as an alternative world view and also as a practical design approach. Particularly in landscape architecture, ecological understanding has been at the very core of the profession since its emergence and plays an important role in the decision making processes. While ecology supports the profession with an objective rationale, aesthetics plays another major role in providing various understandings about the aesthetic experience of people, which is rather subjective. However, the ways to seek the balance between them are still controversial. Furthermore, the conventional aesthetic value system of landscape appears to have limitations for guiding us to an appropriate appreciation, especially in dealing with newly emerging urban landscape patterns such as regeneration of post-industrial landscapes. Understanding these issues, there have been continuous attempts to describe the relation between ecology and aesthetics, suggesting that a new approach known as "ecological aesthetics," can bring us a new set of viewpoints seeking a reunion of nature and culture, and science and art. It asserts that "there is a type of beauty" in the landscape associated with its ecological health which people could aesthetically appreciate; and therefore, revealing the "hidden" beauty of nature in more visible ways should be the primary concern of today's ecological designers. This research mainly consists of extensive literature research and a case study on two landscape restructuring projects of post-industrial landscapes in Seoul, Korea. The literature research redefines the tasks of landscape architecture based on the idea of ecological aesthetics, and the case study seeks the potentials and limitations of current design projects. This research proposes a framework for landscape perception and reflects on the lessons that would be useful for better practice and research.
ContributorsMin, Byoung Wook (Author) / Cook, Edward (Thesis advisor) / Crewe, Katherine (Committee member) / Pijawka, David (Committee member) / Arizona State University (Publisher)
Created2011
151662-Thumbnail Image.png
Description
Livestock-grazing, in particular cattle grazing, is a common use of public and private lands in western North America. As a result, the effects of grazing on both plants and animals are widely studied. Few studies, however, look directly at the long-term effects that cattle grazing may have on a particular

Livestock-grazing, in particular cattle grazing, is a common use of public and private lands in western North America. As a result, the effects of grazing on both plants and animals are widely studied. Few studies, however, look directly at the long-term effects that cattle grazing may have on a particular species. The goal of this experiment was to continue research begun in 1988, to determine if the effects of cattle grazing are still seen in the age structure of two populations of saguaros (Carnegiea gigantea [Engelm.] Britton & Rose) at Saguaro National Park - Rincon Mountain District (SNP-RMD). The null hypothesis stated that enough time has elapsed since the cessation of grazing, and there is no difference in the age distribution of the saguaros of the two populations. The study area was comprised of a former fence line where grazing ceased on the western side of the fence in 1958 and the eastern side in 1978. Belt transects were laid on each side of the fence line and height was measured for each saguaro encountered in a transect. Approximate age of the individual was then calculated using an age-height correlation for SNP-RMD. Individuals were then placed into age classes of 10 year increments and a Log-Likelihood test was performed. The resulting calculated P value of 0.12 meant the null hypothesis was not rejected and there was no statistical difference between the age structure of the two populations. After 34 and 54 years rest from grazing, the negative effects of cattle grazing on the retention and recruitment of saguaro seedlings have ended, and replenishment of the populations is now dependent upon factors such as temperature and precipitation. Other factors such as climate change, increasing fire frequency, encroachment by invasive species, and poaching are sources of concern and increased mortality for these and other saguaros.
ContributorsKrone, Elizabeth AnnMarie Stewart (Author) / Alford, Eddie (Thesis advisor) / Brady, Ward (Committee member) / Green, Douglas (Committee member) / Arizona State University (Publisher)
Created2013
151428-Thumbnail Image.png
Description
Mycorrhizal fungi form symbiotic relationships with plant roots, increasing nutrient and water availability to plants and improving soil stability. Mechanical disturbance of soil has been found to reduce mycorrhizal inoculum in soils, but findings have been inconsistent. To examine the impact of restoration practices on riparian mycorrhizal inoculum potential, soil

Mycorrhizal fungi form symbiotic relationships with plant roots, increasing nutrient and water availability to plants and improving soil stability. Mechanical disturbance of soil has been found to reduce mycorrhizal inoculum in soils, but findings have been inconsistent. To examine the impact of restoration practices on riparian mycorrhizal inoculum potential, soil samples were collected at the Tres Rios Ecosystem Restoration and Flood Control Project located at the confluence of the Salt, Gila, and Agua Fria rivers in central Arizona. The project involved the mechanical removal of invasive Tamarix spp.( tamarisk, salt cedar) and grading prior to revegetation. Soil samples were collected from three stages of restoration: pre-restoration, soil banks with chipped vegetation, and in areas that had been graded in preparation for revegetation. Bioassay plants were grown in the soil samples and roots analyzed for arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) infection percentages. Vegetations measurements were also taken for woody vegetation at the site. The mean number of AM and EM fungal propagules did not differ between the three treatment area, but inoculum levels did differ between AM and EM fungi with AM fungal propagules detected at moderate levels and EM fungi at very low levels. These differences may have been related to availability of host plants since AM fungi form associations with a variety of desert riparian forbs and grasses and EM fungi only form associations with Populus spp. and Salix spp. which were present at the site but at low density and canopy cover. Prior studies have also found that EM fungi may be more affected by tamarisk invasions than AM fungi. Our results were similar to other restoration projects for AM fungi suggesting that it may not be necessary to add AM fungi to soil prior to planting native vegetation because of the moderate presence of AM fungi even in soils dominated by tamarisk and exposed to soil disturbance during the restoration process. In contrast when planting trees that form EM associations, it may be beneficial to augment soil with EM fungi collected from riparian areas or to pre-inoculate plants prior to planting.
ContributorsArnold, Susanne (Author) / Stutz, Jean (Thesis advisor) / Alford, Eddie (Committee member) / Green, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
151938-Thumbnail Image.png
Description

Hydrology and biogeochemistry are coupled in all systems. However, human decision-making regarding hydrology and biogeochemistry are often separate, even though decisions about hydrologic systems may have substantial impacts on biogeochemical patterns and processes. The overarching question of this dissertation was: How does hydrologic engineering interact with the effects of nutrient

Hydrology and biogeochemistry are coupled in all systems. However, human decision-making regarding hydrology and biogeochemistry are often separate, even though decisions about hydrologic systems may have substantial impacts on biogeochemical patterns and processes. The overarching question of this dissertation was: How does hydrologic engineering interact with the effects of nutrient loading and climate to drive watershed nutrient yields? I conducted research in two study systems with contrasting spatial and temporal scales. Using a combination of data-mining and modeling approaches, I reconstructed nitrogen and phosphorus budgets for the northeastern US over the 20th century, including anthropogenic nutrient inputs and riverine fluxes, for ~200 watersheds at 5 year time intervals. Infrastructure systems, such as sewers, wastewater treatment plants, and reservoirs, strongly affected the spatial and temporal patterns of nutrient fluxes from northeastern watersheds. At a smaller scale, I investigated the effects of urban stormwater drainage infrastructure on water and nutrient delivery from urban watersheds in Phoenix, AZ. Using a combination of field monitoring and statistical modeling, I tested hypotheses about the importance of hydrologic and biogeochemical control of nutrient delivery. My research suggests that hydrology is the major driver of differences in nutrient fluxes from urban watersheds at the event scale, and that consideration of altered hydrologic networks is critical for understanding anthropogenic impacts on biogeochemical cycles. Overall, I found that human activities affect nutrient transport via multiple pathways. Anthropogenic nutrient additions increase the supply of nutrients available for transport, whereas hydrologic infrastructure controls the delivery of nutrients from watersheds. Incorporating the effects of hydrologic infrastructure is critical for understanding anthropogenic effects on biogeochemical fluxes across spatial and temporal scales.

ContributorsHale, Rebecca Leslie (Author) / Grimm, Nancy (Thesis advisor) / Childers, Daniel (Committee member) / Vivoni, Enrique (Committee member) / York, Abigail (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2013
152091-Thumbnail Image.png
Description
The Cave Creek Complex fires of June and July of 2005 north of Phoenix, Arizona, U.S.A. burned 248,310 acres of Sonoran desert, primarily on the Tonto National Forest, USFS. The fires consumed multiple stands of the keystone species Carnegiea gigantea, the saguaro cactus. Restoration efforts in late spring 2007 involved

The Cave Creek Complex fires of June and July of 2005 north of Phoenix, Arizona, U.S.A. burned 248,310 acres of Sonoran desert, primarily on the Tonto National Forest, USFS. The fires consumed multiple stands of the keystone species Carnegiea gigantea, the saguaro cactus. Restoration efforts in late spring 2007 involved the monitoring of 200 transplanted saguaro cacti over a two year period for overall establishment and success. Observation of local saguaro distribution suggests that soil factors might influence saguaro growth. Therefore, soil samples were collected from each transplant location and analyzed for percentage coarse fragments, texture, pH and electrical conductivity as soil collection and analysis of these variables are relatively inexpensive and expedient. Regression analysis was used to determine which, if any of these soil characteristics significantly correlated with plant growth. The results of this study found significant correlation between saguaro transplant growth and the soil variables of clay content and pH, but no correlation between saguaro growth and coarse fragment percentages or electrical conductivity.
ContributorsElliott, Todd (Author) / Green, Douglas (Thesis advisor) / Steele, Kelly (Committee member) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2013
151007-Thumbnail Image.png
Description
Despite public demand for climate change mitigation and natural open space conservancy, existing political and design efforts are only beginning to address the declining efficacy of the biotic carbon pool (C-pool) to sequester carbon. Advances in understanding of biogeochemical processes have provided methods for estimating carbon embodied in natural open

Despite public demand for climate change mitigation and natural open space conservancy, existing political and design efforts are only beginning to address the declining efficacy of the biotic carbon pool (C-pool) to sequester carbon. Advances in understanding of biogeochemical processes have provided methods for estimating carbon embodied in natural open spaces and enhancing carbon sequestration efficacy. In this study, the benefits of carbon embodied in dryland open spaces are determined by estimating carbon flux and analyzing ecological, social, and economic benefits provided by sequestered carbon. Understanding the ecological processes and derived benefits of carbon exchange in dryland open spaces will provide insight into enhancing carbon sequestration efficacy. Open space carbon is estimated by calculating the amount of carbon sequestration (estimated in Mg C / ha / y) in dryland open space C-pools. Carbon sequestration in dryland open spaces can be summarized in five open space typologies: hydric, mesic, aridic, biomass for energy agriculture, and traditional agriculture. Hydric (wetland) systems receive a significant amount of moisture; mesic (riparian) systems receive a moderate amount of moisture; and aridic (dry) systems receive low amounts of moisture. Biomass for energy production (perennial biomass) and traditional agriculture (annual / traditional biomass) can be more effective carbon sinks if managed appropriately. Impacts of design interventions to the carbon capacity of dryland open space systems are calculated by estimating carbon exchange in existing open space (base case) compared to projections of carbon sequestered in a modified system (prototype design). A demonstration project at the Lower San Pedro River Watershed highlights the potential for enhancing carbon sequestration. The site-scale demonstration project takes into account a number of limiting factors and opportunities including: availability of water and ability to manipulate its course, existing and potential vegetation, soil types and use of carbon additives, and land-use (particularly agriculture). Specific design challenges to overcome included: restoring perennial water to the Lower San Pedro River, reestablishing hydric and mesic systems, linking fragmented vegetation, and establishing agricultural systems that provide economic opportunities and act as carbon sinks. The prototype design showed enhancing carbon sequestration efficacy by 128-133% is possible with conservative design interventions.
ContributorsHuck, Erick (Author) / Cook, Edward (Thesis advisor) / Green, Douglas (Committee member) / Brooks, Kenneth (Committee member) / Montemayor, Gabriel (Committee member) / Arizona State University (Publisher)
Created2012
151167-Thumbnail Image.png
Description
A functioning food web is the basis of a functioning community and ecosystem. Thus, it is important to understand the dynamics that control species behaviors and interactions. Alterations to the fundamental dynamics can prove detrimental to the future success of our environment. Research and analysis focus on the global dynamics

A functioning food web is the basis of a functioning community and ecosystem. Thus, it is important to understand the dynamics that control species behaviors and interactions. Alterations to the fundamental dynamics can prove detrimental to the future success of our environment. Research and analysis focus on the global dynamics involved in intraguild predation (IGP), a three species subsystem involving both competition and predation. A mathematical model is derived using differential equations based on pre-existing models to accurately predict species behavior. Analyses provide sufficient conditions for species persistence and extinction that can be used to explain global dynamics. Dynamics are compared for two separate models, one involving a specialist predator and the second involving a generalist predator, where systems involving a specialist predator are prone to unstable dynamics. Analyses have implications in biological conservation tactics including various methods of prevention and preservation. Simulations are used to compare dynamics between models involving continuous time and those involving discrete time. Furthermore, we derive a semi-discrete model that utilizes both continuous and discrete time series dynamics. Simulations imply that Holling's Type III functional response controls the potential for three species persistence. Complicated dynamics govern the IGP subsystem involving the white-footed mouse, gypsy moth, and oak, and they ultimately cause the synchronized defoliation of forests across the Northeastern United States. Acorn mast seasons occur every 4-5 years, and they occur simultaneously across a vast geographic region due to universal cues. Research confirms that synchronization can be transferred across trophic levels to explain how this IGP system ultimately leads to gypsy moth outbreaks. Geographically referenced data is used to track and slow the spread of gypsy moths further into the United States. Geographic Information Systems (GIS) are used to create visual, readily accessible, displays of trap records, defoliation frequency, and susceptible forest stands. Mathematical models can be used to explain both changes in population densities and geographic movement. Analyses utilizing GIS softwares offer a different, but promising, way of approaching the vast topic of conservation biology. Simulations and maps are produced that can predict the effects of conservation efforts.
ContributorsWedekin, Lauren (Author) / Kang, Yun (Thesis advisor) / Green, Douglas (Committee member) / Miller, William (Committee member) / Arizona State University (Publisher)
Created2012
136812-Thumbnail Image.png
Description
Now dry and broken, the Salt River once supplied a great legacy of Riparian vegetation through the Sonoran desert. This verdant landscape flourished from perennial flows of a river fed by high mountain snowmelt. However, multiple dams within those mountain canyons and channelization for the purpose of flood protection have

Now dry and broken, the Salt River once supplied a great legacy of Riparian vegetation through the Sonoran desert. This verdant landscape flourished from perennial flows of a river fed by high mountain snowmelt. However, multiple dams within those mountain canyons and channelization for the purpose of flood protection have nearly dried up the Salt. Through the process of design I examined the potential to repair, restore, and redevelop the river, choosing a site within the reach of the Salt River that currently includes an artificial retention area called Tempe Town Lake. Since 1999 a two mile portion of the river channel has contained the reservoir for the purpose of recreation and development within the city of Tempe. As I investigated the viability of restoring an urban desert river to a more natural riparian condition, I developed a master plan that merges ecological river restoration with sustainable urban development. Research into the vegetative communities historically occurring along the river's edge guided me to create a project based in ecological principles. Expanding the concrete channel to a wider river presence followed examples set by case studies and the historic character of the Salt River. A new braided low flow channel, allowed to meander with the natural currents of the river, is terraced upwards in a gentle slope that maintains current 500-year flow plains. The vegetation communities I propose to establish along the new terraced elevations are adapted from Charles H. Lowe's profile of a foothill canyon and archival research specific to this portion of the Salt River. As a way to support the reintroduction of Arizona's lost riparian plant communities, the master plan incorporates the use of greywater and A/C condensate collection from proposed developments along the river's edge. These new water systems would be substantial enough to sustain riparian vegetation creation and in addition, provide for ground water recharge. Additional developments continue the City of Tempe's goal to expand development along the river and adjacent to the downtown core. Providing for increased recreational opportunity in a river setting improves the quality of life in Tempe and sets the community apart from surrounding desert cities. By applying ecological and sustainable design and planning principles, the Salt River Diaries master plan repairs the river's flow, restores the riparian vegetation, and redevelops the edge between the city and river.
ContributorsBruckner, Coby Ryan (Author) / Fish Ewan, Rebecca (Thesis director) / Cook, Edward (Committee member) / Sykes, Astrid (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / The Design School (Contributor)
Created2014-05