Matching Items (41)
153076-Thumbnail Image.png
Description
Nitrate, a widespread contaminant in surface water, can cause eutrophication and toxicity to aquatic organisms. To augment the nitrate-removal capacity of constructed wetlands, I applied the H2-based Membrane Biofilm Reactor (MBfR) in a novel configuration called the in situ MBfR (isMBfR). The goal of my thesis is to

Nitrate, a widespread contaminant in surface water, can cause eutrophication and toxicity to aquatic organisms. To augment the nitrate-removal capacity of constructed wetlands, I applied the H2-based Membrane Biofilm Reactor (MBfR) in a novel configuration called the in situ MBfR (isMBfR). The goal of my thesis is to evaluate and model the nitrate removal performance for a bench-scale isMBfR system.

I operated the bench-scale isMBfR system in 7 different conditions to evaluate its nitrate-removal performance. When I supplied H2 with the isMBfR (stages 1 - 6), I observed at least 70% nitrate removal, and almost all of the denitrification occurred in the "MBfR zone." When I stopped the H2 supply in stage 7, the nitrate-removal percentage immediately dropped from 92% (stage 6) to 11% (stage 7). Denitrification raised the pH of the bulk liquid to ~ 9.0 for the first 6 stages, but the high pH did not impair the performance of the denitrifiers. Microbial community analyses indicated that DB were the dominant bacteria in the "MBfR zone," while photosynthetic Cyanobacteria were dominant in the "photo-zone".

I derived stoichiometric relationships among COD, alkalinity, H2, Dissolved Oxygen (DO), and nitrate to model the nitrate removal capacity of the "MBfR zone." The stoichiometric relationships corresponded well to the nitrate-removal capacity for all stages expect stage 3, which was limited by the abundance of Denitrifying Bacteria (DB) so that the H2 supply capacity could not be completely used.

Finally, I analyzed two case studies for the real-world application of the isMBfR to constructed wetlands. Based on the characteristics for the wetlands and the stoichiometric relationships, I designed a feasible operation condition (membrane area and H2 pressure) for each wetland. In both cases, the amount of isMBfR surface area was modest, from 0.022 to 1.2 m2/m3 of wetland volume.
ContributorsLi, Yizhou (Author) / Rittmann, Bruce (Thesis advisor) / Vivoni, Enrique (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2014
153114-Thumbnail Image.png
Description
Sustainability requires developing the capacity to manage difficult tradeoffs to advance human livelihoods now and in the future. Decision-makers are recognizing the ecosystem services approach as a useful framework for evaluating tradeoffs associated with environmental change to advance decision-making towards holistic solutions. In this dissertation I conduct an ecosystem services

Sustainability requires developing the capacity to manage difficult tradeoffs to advance human livelihoods now and in the future. Decision-makers are recognizing the ecosystem services approach as a useful framework for evaluating tradeoffs associated with environmental change to advance decision-making towards holistic solutions. In this dissertation I conduct an ecosystem services assessment on the Yongding River Ecological Corridor in Beijing, China. I developed a `10-step approach' to evaluate multiple ecosystem services for public policy. I use the 10-step approach to evaluate five ecosystem services for management from the Yongding Corridor. The Beijing government created lakes and wetlands for five services (human benefits): (1) water storage (groundwater recharge), (2) local climate regulation (cooling), (3) water purification (water quality), (4) dust control (air quality), and (5) landscape aesthetics (leisure, recreation, and economic development).

The Yongding Corridor is meeting the final ecosystem service levels for landscape aesthetics, but the new ecosystems are falling short on meeting final ecosystem service levels for water storage, local climate regulation, water purification, and dust control. I used biophysical models (process-based and empirically-based), field data (biophysical and visitor surveys), and government datasets to create ecological production functions (i.e., regression models). I used the ecological production functions to evaluate how marginal changes in the ecosystems could impact final ecosystem service outcomes. I evaluate potential tradeoffs considering stakeholder needs to recommend synergistic actions for addressing priorities while reducing service shortfalls.
ContributorsWong, Christina P (Author) / Kinzig, Ann P (Thesis advisor) / Lee, Kai N. (Committee member) / Muneepeerakul, Rachata (Committee member) / Ouyang, Zhiyun (Committee member) / Vivoni, Enrique (Committee member) / Arizona State University (Publisher)
Created2014
153024-Thumbnail Image.png
Description
Sedimentary basins are defined by extensional tectonics. Rugged mountain ranges stand in stark relief adjacent to muted structural basins filled with sediment. In simplest terms, this topography is the result of ranges uplifted along normal faults, and this uplift drives erosion within upland drainages, shedding sediment into subsiding basins. In

Sedimentary basins are defined by extensional tectonics. Rugged mountain ranges stand in stark relief adjacent to muted structural basins filled with sediment. In simplest terms, this topography is the result of ranges uplifted along normal faults, and this uplift drives erosion within upland drainages, shedding sediment into subsiding basins. In southeastern Arizona's Basin and Range province extensional tectonics waned at approximately 3-5 Myr, and the region's structural basins began transitioning from internal to external drainage, forming the modern Gila River fluvial network. In the Atacama Desert of northern Chile, some basins of the Central Depression remain internally drained while others have integrated to the Pacific Ocean. In northern Chile, rates of landscape evolution are some of the slowest on Earth due to the region's hyperarid climate. While the magnitude of upland erosion driven by extensional tectonics is largely recorded in the stratigraphy of the structural basins, the landscape's response to post-tectonic forcings is unknown.

I employ the full suite of modern geomorphic tools provided by terrestrial cosmogenic nuclides - surface exposure dating, conventional burial dating, isochron burial dating, quantifying millennial-scale upland erosion rates using detrital TCN, quantifying paleo-erosion rates using multiple TCN such as Ne-21/Be-10 and Al-26l/Be-10, and assessing sediment recycling and complex exposure using multiple TCN - to quantify the rates of landscape evolution in southeastern Arizona and northern Chile during the Late Cenozoic. In Arizona, I also use modern remnants of the pre-incision landscape and digital terrain analyses to reconstruct the landscape, allowing the quantification of incision and erosion rates that supplement detrital TCN-derived erosion rates. A new chronology for key basin high stand remnants (Frye Mesa) and a flight of Gila River terraces in Safford basin provides a record of incision rates from the Pliocene through the Quaternary, and I assess how significantly regional incision is driving erosion rates. Paired nuclide analyses in the Atacama Desert of northern Chile reveal complex exposure histories resulting from several rounds of transport and burial by fluvial systems. These results support a growing understanding that geomorphic processes in the Atacama Desert are more active than previously thought despite the region's hyperarid climate.
ContributorsJungers, Matthew Cross (Author) / Heimsath, Arjun M (Thesis advisor) / Whipple, Kelin (Committee member) / Arrowsmith, Ramon (Committee member) / Vivoni, Enrique (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2014
153169-Thumbnail Image.png
Description
Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to

Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to assess the effects of increased interannual precipitation variation on ecosystem functioning in grasslands. In order to address this objective, I used a combination of field experimentation and data synthesis. Precipitation manipulations on the field experiments were carried out using an automated rainfall manipulation system developed as part of this dissertation. Aboveground net primary production responses were monitored during five years. Increased precipitation coefficient of variation decreased primary production regardless of the effect of precipitation amount. Perennial-grass productivity significantly decreased while shrub productivity increased as a result of enhanced precipitation variance. Most interesting is that the effect of precipitation variability increased through time highlighting the existence of temporal lags in ecosystem response.

Further, I investigated the effect of precipitation variation on functional diversity on the same experiment and found a positive response of diversity to increased interannual precipitation variance. Functional evenness showed a similar response resulting from large changes in plant-functional type relative abundance including decreased grass and increased shrub cover while functional richness showed non-significant response. Increased functional diversity ameliorated the direct negative effects of precipitation variation on ecosystem ANPP but did not control ecosystem stability where indirect effects through the dominant plant-functional type determined ecosystem stability.

Analyses of 80 long-term data sets, where I aggregated annual productivity and precipitation data into five-year temporal windows, showed that precipitation variance had a significant effect on aboveground net primary production that is modulated by mean precipitation. Productivity increased with precipitation variation at sites where mean annual precipitation is less than 339 mm but decreased at sites where precipitation is higher than 339 mm. Mechanisms proposed to explain patterns include: differential ANPP response to precipitation among sites, contrasting legacy effects and soil water distribution.

Finally, increased precipitation variance may impact global grasslands affecting plant-functional types in different ways that may lead to state changes, increased erosion and decreased stability that can in turn limit the services provided by these valuable ecosystems.
ContributorsGherardi Arbizu, Laureano (Author) / Sala, Osvaldo E. (Thesis advisor) / Childers, Daniel (Committee member) / Grimm, Nancy (Committee member) / Hall, Sharon (Committee member) / Wu, Jingle (Committee member) / Arizona State University (Publisher)
Created2014
156248-Thumbnail Image.png
Description
The Colorado River Basin (CRB) is the primary source of water in the

southwestern United States. A key step to reduce the uncertainty of future streamflow

projections in the CRB is to evaluate the performance of historical simulations of General

Circulation Models (GCMs). In this study, this challenge is addressed by evaluating the

ability

The Colorado River Basin (CRB) is the primary source of water in the

southwestern United States. A key step to reduce the uncertainty of future streamflow

projections in the CRB is to evaluate the performance of historical simulations of General

Circulation Models (GCMs). In this study, this challenge is addressed by evaluating the

ability of nineteen GCMs from the Coupled Model Intercomparison Project Phase Five

(CMIP5) and four nested Regional Climate Models (RCMs) in reproducing the statistical

properties of the hydrologic cycle and temperature in the CRB. To capture the transition

from snow-dominated to semiarid regions, analyses are conducted by spatially averaging

the climate variables in four nested sub-basins. Most models overestimate the mean

annual precipitation (P) and underestimate the mean annual temperature (T) at all

locations. While a group of models capture the mean annual runoff at all sub-basins with

different strengths of the hydrological cycle, another set of models overestimate the mean

annual runoff, due to a weak cycle in the evaporation channel. An abrupt increase in the

mean annual T in observed and most of the simulated time series (~0.8 °C) is detected at

all locations despite the lack of any statistically significant monotonic trends for both P

and T. While all models simulate the seasonality of T quite well, the phasing of the

seasonal cycle of P is fairly reproduced in just the upper, snow-dominated sub-basin.

Model performances degrade in the larger sub-basins that include semiarid areas, because

several GCMs are not able to capture the effect of the North American monsoon. Finally,

the relative performances of the climate models in reproducing the climatologies of P and

T are quantified to support future impact studies in the basin.
ContributorsGautam, Jenita (Author) / Mascaro, Giuseppe (Thesis advisor) / Vivoni, Enrique (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2018
153721-Thumbnail Image.png
Description
Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research ga

Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research gap in emerging nations concerning this topic. Thus, this research focuses on the assessment of climate impacts related to urbanization on the largest metropolitan area in Latin America: Mexico City.

Numerical simulations using a state-of-the-science regional climate model are utilized to address a trio of scientifically relevant questions with wide global applicability. The importance of an accurate representation of land use and land cover is first demonstrated through comparison of numerical simulations against observations. Second, the simulated effect of anthropogenic heating is quantified. Lastly, numerical simulations are performed using pre-historic scenarios of land use and land cover to examine and quantify the impact of Mexico City's urban expansion and changes in surface water features on its regional climate.
ContributorsBenson-Lira, Valeria (Author) / Georgescu, Matei (Thesis advisor) / Brazel, Anthony (Committee member) / Vivoni, Enrique (Committee member) / Arizona State University (Publisher)
Created2015
Description
Phosphorus (P) is an essential resource for global food security, but global supplies are limited and demand is growing. Demand reductions are critical for achieving P sustainability, but recovery and re-use is also required. Wastewater treatment plants and livestock manures receive considerable attention for their P content, but

Phosphorus (P) is an essential resource for global food security, but global supplies are limited and demand is growing. Demand reductions are critical for achieving P sustainability, but recovery and re-use is also required. Wastewater treatment plants and livestock manures receive considerable attention for their P content, but municipal organic waste is another important source of P to address. Previous research identified the importance of diverting this waste stream from landfills for recovering P, but little has been done to identify the collection and processing mechanisms required, or address the existing economic barriers. In my research, I conducted a current state assessment of organic waste management by creating case studies in Phoenix, Arizona and New Delhi, India, and surveyed biomass energy facilities throughout the United States. With participation from waste management professionals I also envisioned an organic waste management system that contributes to sustainable P while improving environmental, social, and economic outcomes.

The results of my research indicated a number of important leverage points, including landfill fees, diversion mandates for organic waste, and renewable energy credits. Source separation of organic waste improves the range of uses, decreases processing costs, and facilitates P recovery, while creating jobs and contributing to a circular economy. Food is a significant component of the waste stream, and edible food is best diverted to food banks, while scraps are best given to livestock. Biomass energy systems produce multiple revenue streams, have high processing capacities, and concentrate P and other minerals to a greater extent than composting. Using recovered P in urban agriculture and native landscaping results in additional benefits to social-ecological systems by improving food security, reducing the urban heat island effect, sequestering carbon, and enhancing urban ecosystems.
ContributorsStoltzfus, Jared Thomas Yoder (Author) / Childers, Daniel (Thesis advisor) / Basile, George (Committee member) / Abbott, Joshua (Committee member) / Arizona State University (Publisher)
Created2016
154301-Thumbnail Image.png
Description
The increasingly recurrent extraordinary flood events in the metropolitan area of Monterrey, Mexico have led to significant stakeholder interest in understanding the hydrologic response of the Santa Catarina watershed to extreme events. This study analyzes a flood mitigation strategy proposed by stakeholders through a participatory workshop and are assessed using

The increasingly recurrent extraordinary flood events in the metropolitan area of Monterrey, Mexico have led to significant stakeholder interest in understanding the hydrologic response of the Santa Catarina watershed to extreme events. This study analyzes a flood mitigation strategy proposed by stakeholders through a participatory workshop and are assessed using two hydrological models: The Hydrological Modeling System (HEC-HMS) and the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS).

The stakeholder-derived flood mitigation strategy consists of placing new hydraulic infrastructure in addition to the current flood controls in the basin. This is done by simulating three scenarios: (1) evaluate the impact of the current structure, (2) implementing a large dam similar to the Rompepicos dam and (3) the inclusion of three small detention dams. These mitigation strategies are assessed in the context of a major flood event caused by the landfall of Hurricane Alex in July 2010 through a consistent application of the two modeling tools. To do so, spatial information on topography, soil, land cover and meteorological forcing were assembled, quality-controlled and input into each model. Calibration was performed for each model based on streamflow observations and maximum observed reservoir levels from the National Water Commission in Mexico.

Simulation analyses focuses on the differential capability of the two models in capturing the spatial variability in rainfall, topographic conditions, soil hydraulic properties and its effect on the flood response in the presence of the different flood mitigation structures. The implementation of new hydraulic infrastructure is shown to have a positive impact on mitigating the flood peak with a more favorable reduction in the peak at the outlet from the larger dam (16.5% in tRIBS and 23% in HEC-HMS) than the collective effect from the small structures (12% in tRIBS and 10% in HEC-HMS). Furthermore, flood peak mitigation depends strongly on the number and locations of the new dam sites in relation to the spatial distribution of rainfall and flood generation. Comparison of the two modeling approaches complements the analysis of available observations for the flood event and provides a framework within which to derive a multi-model approach for stakeholder-driven solutions.
ContributorsCázares Rodríguez, Jorge E (Author) / Vivoni, Enrique (Thesis advisor) / Wang, Zhihua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2016
154093-Thumbnail Image.png
Description
Hydrological models in arid and semi-arid ecosystems can be subject to high uncertainties. Spatial variability in soil moisture and evapotranspiration, key components of the water cycle, can contribute to model uncertainty. In particular, an understudied source of spatial variation is the effect of plant-plant interactions on water fluxes. At patch

Hydrological models in arid and semi-arid ecosystems can be subject to high uncertainties. Spatial variability in soil moisture and evapotranspiration, key components of the water cycle, can contribute to model uncertainty. In particular, an understudied source of spatial variation is the effect of plant-plant interactions on water fluxes. At patch scales (plant and associated soil), plant neighbors can either negatively or positively affect soil water availability via competition or hydraulic redistribution, respectively. The aboveground microclimate can also be altered via canopy shading effects by neighbors. Across longer timescales (years), plants may adjust their physiological (water-use) traits in response to the neighbor-altered microclimate, which subsequently affects transpiration rates. The influence of physiological adjustments and neighbor-altered microclimate on water fluxes was assessed around Larrea tridentata in the Sonoran Desert. Field measurements of Larrea’s stomatal behavior and vertical root distributions were used to examine the effects of neighbors on Larrea’s physiological controls on transpiration. A modeling based approach was implemented to explore the sensitivity of evapotranspiration and soil moisture to neighbor effects. Neighbors significantly altered both above- and belowground physiological controls on evapotranspiration. Compared to Larrea growing alone, neighbors increased Larrea’s annual transpiration by up to 75% and 30% at the patch and stand scales, respectively. Estimates of annual transpiration were highly sensitive to the presence/absence of competition for water, and on seasonal timescales, physiological adjustments significantly influenced transpiration estimates. Plant-plant interactions can be a significant source of spatial variation in ecohydrological models, and both physiological adjustments to neighbors and neighbor effects on microclimate affect small scale (patch to ecosystem) water fluxes.
ContributorsKropp, Heather (Author) / Ogle, Kiona (Thesis advisor) / Hultine, Kevin (Committee member) / Sala, Osvaldo (Committee member) / Vivoni, Enrique (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2015
168313-Thumbnail Image.png
Description
The fast pace of global urbanization makes cities the hotspots of population density and anthropogenic activities, leading to intensive emissions of heat and carbon dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively seeking effective mitigation strategies over the past decades, aiming to improve the environmental quality

The fast pace of global urbanization makes cities the hotspots of population density and anthropogenic activities, leading to intensive emissions of heat and carbon dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively seeking effective mitigation strategies over the past decades, aiming to improve the environmental quality for urban dwellers. Prior studies have identified the role of urban green spaces in the relief of urban heat stress. Yet little effort was devoted to quantify their contribution to local and regional CO2 budget. In fact, urban biogenic CO2 fluxes from photosynthesis and respiration are influenced by the microclimate in the built environment and are sensitive to anthropogenic disturbance. The high complexity of the urban ecosystem leads to an outstanding challenge for numerical urban models to disentangling and quantifying the interplay between heat and carbon dynamics.This dissertation aims to advance the simulation of thermal and carbon dynamics in urban land surface models, and to investigate the role of urban greening practices and urban system design in mitigating heat and CO2 emissions. The biogenic CO2 exchange in cities is parameterized by incorporating plant physiological functions into an advanced single-layer urban canopy model in the built environment. The simulation result replicates the microclimate and CO2 flux patterns measured from an eddy covariance system over a residential neighborhood in Phoenix, Arizona with satisfactory accuracy. Moreover, the model decomposes the total CO2 flux from observation and identifies the significant CO2 efflux from soil respiration. The model is then applied to quantify the impact of urban greening practices on heat and biogenic CO2 exchange over designed scenarios. The result shows the use of urban greenery is effective in mitigating both urban heat and carbon emissions, providing environmental co-benefit in cities. Furthermore, to seek the optimal urban system design in terms of thermal comfort and CO2 reduction, a multi-objective optimization algorithm is applied to the machine learning surrogates of the physical urban land surface model. There are manifest trade-offs among ameliorating diverse urban environmental indicators despite the co-benefit from urban greening. The findings of this dissertation, along with its implications on urban planning and landscaping management, would promote sustainable urban development strategies for achieving optimal environmental quality for policy makers, urban residents, and practitioners.
ContributorsLi, Peiyuan (Author) / Wang, Zhihua (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Myint, Soe (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2021