Matching Items (54)
187393-Thumbnail Image.png
Description
Plastics are an emerging issue in aquatic ecosystems due to their slow degradation and ability to fragment into smaller more mobile parts. Concluding this process, plastics <5mm are categorized as Microplastics, MPs. Currently, the majority of MP studies bring attention to marine pollution and the impacts that follow. However, it

Plastics are an emerging issue in aquatic ecosystems due to their slow degradation and ability to fragment into smaller more mobile parts. Concluding this process, plastics <5mm are categorized as Microplastics, MPs. Currently, the majority of MP studies bring attention to marine pollution and the impacts that follow. However, it remains a high priority to understand how MPs move through urban aquatic environments, and the impacts this may have for surrounding urban ecosystems. Little is known about how MPs move through tertiary treated wastewater plants, such as constructed wetlands, and how much, if any, remain trapped in abiotic and biotic material such as soil or plant life, respectively. An analysis of MP distribution using Tres Rios, a tertiary wastewater treatment wetland, as the study site may help to shed light on the source-occurrences of MPs. Microplastics extraction was performed on soil, plant, and water samples that were collected along major access points within the system with emphasis on inflow and outflow. The inflow of the wetland receives between 246-398 MPs/L vs the outflow of 90-199 MPs/L. Tres Rios soil concentrations ranged between 1,017-10,100 per kg and 133-700 MPs per kg in sampled vegetation throughout the wetland. The distribution of soil and vegetation samples differed throughout Tres Rios, as soil sampled exhibited higher quantities towards inflow site and vegetation MP occurrences were increased throughout the middle of the system. Additionally, this study aimed to determine if seasonality impacted the concentration of plastics seen throughout the system. There was no evidence that suggested seasonal variations were occurring in any sample type. Atmospheric deposition fluxes of microplastics were considered as a potential additional influx but even at the measured 1510 MP m-2 day-1 they were small compared to the water influx. Overall, the results suggest that the Tres Rios wetland removed 55% of the microplastics it receives and hence performs a substantial ecosystem service.
ContributorsCisco, Jordan (Author) / Green, Douglas (Thesis advisor) / Herckes, Pierre (Thesis advisor) / Childers, Daniel (Committee member) / Arizona State University (Publisher)
Created2023
187733-Thumbnail Image.png
Description
The study of organismal adaptations oftentimes focuses on specific, constant conditions, but environmental parameters are characterized by more or less marked levels of variability, rather than constancy. This is important in environments like soils where microbial activity follows pulses of water availability driven by precipitation. Nowhere are these pulses more

The study of organismal adaptations oftentimes focuses on specific, constant conditions, but environmental parameters are characterized by more or less marked levels of variability, rather than constancy. This is important in environments like soils where microbial activity follows pulses of water availability driven by precipitation. Nowhere are these pulses more variable and unpredictable than in arid soils. Pulses constitute stressful conditions for bacteria because they cause direct cellular damage that must be repaired and they force cells to toggle between dormancy and active physiological states, which is energetically taxing. I hypothesize that arid soil microorganisms are adapted to the variability in wet/dry cycles itself, as determined by the frequency and duration of hydration pulses. To test this, I subjected soil microbiomes from the Chihuahuan Desert to controlled incubations for a total common growth period of 60 hours, but separated into treatments in which the total active time was reached with hydration pulses of different length with intervening periods of desiccation, so as to isolate pulse length and frequency as the varying factors in the experiment. Using 16S rRNA amplicon data, I characterized changes in microbiome growth, diversity, and species composition, and tracked the individual responses to treatment intensity in the 447 most common bacterial species (phylotypes) in the soil. Considering knowledge of extremophile microbiology, I hypothesized that growth yield and diversity would decline with shorter pulses. I found that microbial diversity was indeed a direct function of pulse length, but surprisingly, total yield was an inverse function of it. Pulse regime treatments resulted in progressively more significant differences in community composition with increasing pulse length, as differently adapted phylotypes became more prominent. In fact, more than 30% of the most common bacterial phylotypes demonstrated statistically significant population growth responses to pulse length. Most responsive phylotypes were apparently best adapted to short pulse regimes (known in the literature as Nimble Responders or NIRs), while fewer did better under long pulse regimes (known as TORs or Torpid Responders). Examples of extreme NIRs and TORs could be found among bacteria from different phyla, indicating that these adaptations have occurred multiple times during evolution.
ContributorsKut, Patrick John (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Sala, Osvaldo (Committee member) / Zhu, Qiyun (Committee member) / Arizona State University (Publisher)
Created2023
171761-Thumbnail Image.png
Description
The oceanic biological carbon pump is a key component of the global carbon cycle in which dissolved carbon dioxide is taken up by phytoplankton during photosynthesis, a fraction of which then sinks to depth and contributes to oceanic carbon storage. The small-celled phytoplankton (<5 µm) that dominate the phytoplankton community

The oceanic biological carbon pump is a key component of the global carbon cycle in which dissolved carbon dioxide is taken up by phytoplankton during photosynthesis, a fraction of which then sinks to depth and contributes to oceanic carbon storage. The small-celled phytoplankton (<5 µm) that dominate the phytoplankton community in oligotrophic oceans have traditionally been viewed as contributing little to export production due to their small size. However, recent studies have shown that the picocyanobacterium Synechococcus produces transparent exopolymer particles (TEP), the sticky matrix of marine aggregates, and forms abundant microaggregates (5-60 µm), which is enhanced under nutrient limited growth conditions. Whether other small phytoplankton species exude TEP and form microaggregates, and if these are enhanced under growth-limiting conditions remains to be investigated. This study aims to analyze how nutrient limitation affects TEP production and microaggregate formation of species that are found to be associated with sinking particles in the Sargasso Sea. The pico-cyanobacterium Prochlorococcus marinus (0.8 µm), the nano-diatom Minutocellus polymorphus (2 µm), and the pico-prasinophyte Ostreococcus lucimarinus (0.6 µm) were grown in axenic batch culture experiments under nutrient replete and limited conditions. It was hypothesized that phytoplankton subject to nutrient limitation will aggregate more than those under replete conditions due to an increased exudation of TEP and that Minutocellus would produce the most TEP and microaggregates while Prochlorococcus would produce the least TEP and microaggregates of the three phytoplankton groups. As hypothesized, nutrient limitation increased TEP concentration in all three species, however they were only significant in nitrogen-limited treatments of Prochlorococcus as well as nitrogen- and phosphorus-limited treatments of Minutocellus. Formation of microaggregates was significantly enhanced in Minutocellus and Ostreococcus cultures in distinct microaggregate size ranges. Minutocellus produced the most TEP per cell and aggregated at higher volume concentrations compared to Prochlorococcus and Ostreococcus. Surprisingly, Ostreococcus produced more TEP than Prochlorococcus and Minutocellus per unit cell volume. These findings show for the first time how nutrient limited conditions enhance TEP production and microaggregation of Prochlorococcus, Minutocellus, and Ostreococcus, providing a mechanism for their incorporation into larger, sinking particles and contribution to export production in oligotrophic oceans.
ContributorsShurtleff, Catrina (Author) / Neuer, Susanne (Thesis advisor) / Lomas, Michael W. (Committee member) / Garcia-Pichel, Ferran (Committee member) / Arizona State University (Publisher)
Created2022
171775-Thumbnail Image.png
Description
Under current climate conditions northern peatlands mostly act as C sinks; however, changes in climate and environmental conditions, can change the soil carbon decomposition cascade, thus altering the sink status. Here I studied one of the most abundant northern peatland types, poor fen, situated along a climate gradient from tundra

Under current climate conditions northern peatlands mostly act as C sinks; however, changes in climate and environmental conditions, can change the soil carbon decomposition cascade, thus altering the sink status. Here I studied one of the most abundant northern peatland types, poor fen, situated along a climate gradient from tundra (Daring Lake, Canada) to boreal forest (Lutose, Canada) to temperate broadleaf and mixed forest (Bog Lake, MN and Chicago Bog, NY) biomes to assess patterns of microbial abundance across the climate gradient. Principal component regression analysis of the microbial community and environmental variables determined that mean annual temperature (MAT) (r2=0.85), mean annual precipitation (MAP) (r2=0.88), and soil temperature (r2=0.77), were the top significant drivers of microbial community composition (p < 0.001). Niche breadth analysis revealed the relative abundance of Intrasporangiaceae, Methanobacteriaceae and Candidatus Methanoflorentaceae fam. nov. to increase when MAT and MAP decrease. The same analysis showed Spirochaetaceae, Methanosaetaceae and Methanoregulaceae to increase in relative abundance when MAP, soil temperature and MAT increased, respectively. These findings indicated that climate variables were the strongest predictors of microbial community composition and that certain taxa, especially methanogenic families demonstrate distinct patterns across the climate gradient. To evaluate microbial production of methanogenic substrates, I carried out High Resolution-DNA-Stable Isotope Probing (HR-DNA-SIP) to evaluate the active portion of the community’s intermediary ecosystem metabolic processes. HR-DNA-SIP revealed several challenges in efficiency of labelling and statistical identification of responders, however families like Veillonellaceae, Magnetospirillaceae, Acidobacteriaceae 1, were found ubiquitously active in glucose amended incubations. Differences in metabolic byproducts from glucose amendments show distinct patterns in acetate and propionate accumulation across sites. Families like Spirochaetaceae and Sphingomonadaceae were only found to be active in select sites of propionate amended incubations. By-product analysis from propionate incubations indicate that the northernmost sites were acetate-accumulating communities. These results indicate that microbial communities found in poor fen northern peatlands are strongly influenced by climate variables predicted to change under current climate scenarios. I have identified patterns of relative abundance and activity of select microbial taxa, indicating the potential for climate variables to influence the metabolic pathway in which carbon moves through peatland systems.
ContributorsSarno, Analissa Flores (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Childers, Daniel (Committee member) / Arizona State University (Publisher)
Created2022
168497-Thumbnail Image.png
Description
With the development and successful landing of the NASA Perseverance rover, there has been growing interest in identifying how evidence of ancient life may be preserved and recognized in the geologic record. Environments that enable fossilization of biological remains are termed, “taphonomic windows”, wherein signatures of past life may be

With the development and successful landing of the NASA Perseverance rover, there has been growing interest in identifying how evidence of ancient life may be preserved and recognized in the geologic record. Environments that enable fossilization of biological remains are termed, “taphonomic windows”, wherein signatures of past life may be detected. In this dissertation, I have sought to identify taphonomic windows in planetary-analog environments with an eye towards the exploration of Mars. In the first chapter, I describe how evidence of past microbial life may be preserved within serpentinizing systems. Owing to energetic rock-water reactions, these systems are known to host lithotrophic and organotrophic microbial communities. By investigating drill cores from the Samail Ophiolite in Oman, I report morphological and associated chemical biosignatures preserved in these systems as a result of subsurface carbonation. As serpentinites are known to occur on Mars and potentially other planetary bodies, these deposits potentially represent high-priority targets in the exploration for past microbial life. Next, I investigated samples from Atacama Desert, Chile, to understand how evidence of life may be preserved in ancient sediments formed originally in evaporative playa lakes. Here, I describe organic geochemical and morphological evidence of life preserved within sulfate-dominated evaporite rocks from the Jurassic-Cretaceous Tonel Formation and Oligocene San Pedro Formation. Because evaporative lakes are considered to have been potentially widespread on Mars, these deposits may represent additional key targets to search for evidence of past life. In the final chapter, I describe the fossilization potential of surficial carbonates by investigating Crystal Geyser, an active cold spring environment. Here, carbonate minerals precipitate rapidly in the presence of photosynthetic microbial mat communities. I describe how potential biosignatures are initially captured by mineralization, including cell-like structures and microdigitate stromatolites. However, these morphological signatures quickly degrade owing to diagenetic dissolution and recrystallization reactions, as well as textural coarsening that homogenizes the carbonate fabric. Overall, my dissertation underscores the complexity of microbial fossilization and highlights chemically-precipitating environments that may serve as high-priority targets for astrobiological exploration.
ContributorsZaloumis, Jonathan (Author) / Farmer, Jack D (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Ruff, Steven W (Committee member) / Shock, Everett L (Committee member) / Arizona State University (Publisher)
Created2021
168533-Thumbnail Image.png
Description
Predatory bacteria are a guild of heterotrophs that feed directly on other living bacteria. They belong to several bacterial lineages that evolved this mode of life independently and occur in many microbiomes and environments. Current knowledge of predatory bacteria is based on culture studies and simple detection in natural systems.

Predatory bacteria are a guild of heterotrophs that feed directly on other living bacteria. They belong to several bacterial lineages that evolved this mode of life independently and occur in many microbiomes and environments. Current knowledge of predatory bacteria is based on culture studies and simple detection in natural systems. The ecological consequences of their activity, unlike those of other populational loss factors like viral infection or grazing by protists, are yet to be assessed. During large-scale cultivation of biological soil crusts intended for arid soil rehabilitation, episodes of catastrophic failure were observed in cyanobacterial growth that could be ascribed to the action of an unknown predatory bacterium using bioassays. This predatory bacterium was also present in natural biocrust communities, where it formed clearings (plaques) up to 9 cm in diameter that were visible to the naked eye. Enrichment cultivation and purification by cell-sorting were used to obtain co-cultures of the predator with its cyanobacterial prey, as well as to identify and characterize it genomically, physiologically and ultrastructurally. A Bacteroidetes bacterium, unrelated to any known isolate at the family level, it is endobiotic, non-motile, obligately predatory, displays a complex life cycle and very unusual ultrastructure. Extracellular propagules are small (0.8-1.0 µm) Gram-negative cocci with internal two-membrane-bound compartmentalization. These gain entry to the prey likely using a suite of hydrolytic enzymes, localizing to the cyanobacterial cytoplasm, where growth begins into non-compartmentalized pseudofilaments that undergo secretion of vesicles and simultaneous multiple division to yield new propagules. I formally describe it as Candidatus Cyanoraptor togatus, hereafter Cyanoraptor. Its prey range is restricted to biocrust-forming, filamentous, non-heterocystous, gliding, bundle-making cyanobacteria. Molecular meta-analyses showed its worldwide distribution in biocrusts. Biogeochemical analyses of Cyanoraptor plaques revealed that it causes a complete loss of primary productivity, and significant decreases in other biocrusts properties such as water-retention and dust-trapping capacity. Extensive field surveys in the US Southwest revealed its ubiquity and its dispersal-limited, aggregated spatial distribution and incidence. Overall, its activity reduces biocrust productivity by 10% at the ecosystem scale. My research points to predatory bacteria as a significant, but overlooked, ecological force in shaping soil microbiomes.
ContributorsBethany Rakes, Julie Ann (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Gile, Gillian (Committee member) / Cao, Huansheng (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2022
168492-Thumbnail Image.png
Description
There is an estimated five trillion pieces of plastic in the global ocean, with 4.8 to 12.7 million metric tons entering the ocean annually. Much of the plastic in the ocean is in the form of microplastics, or plastic particles <5mm in size. Microplastics enter the marine environment as primary

There is an estimated five trillion pieces of plastic in the global ocean, with 4.8 to 12.7 million metric tons entering the ocean annually. Much of the plastic in the ocean is in the form of microplastics, or plastic particles <5mm in size. Microplastics enter the marine environment as primary or secondary microplastics; primary microplastics are pre-manufactured micro-sized particles, such as microbeads used in cosmetics, while secondary microplastics form from the degradation of larger plastic objects, such water bottles. Once in the ocean, plastics are readily colonized by a consortium of prokaryotic and eukaryotic organisms, which form dense biofilms on the plastic; this biofilm is termed the “plastisphere”. Despite growing concerns about the ecological impact of microplastics and their respective plastispheres on the marine environment, there is little consensus about the factors that shape the plastisphere on environmentally relevant secondary microplastics. The goal of my dissertation is to comprehensively analyze the role of plastic polymer type, incubation time, and geographic location on shaping plastisphere communities attached to secondary microplastics. I investigated the plastisphere of six chemically distinct plastic polymer types obtained from common household consumer products that were incubated in the coastal Caribbean (Bocas del Toro, Panama) and coastal Pacific (San Diego, CA) oceans. Genotyping using 16S and 18S rRNA gene amplification and next-generation Illumina sequencing was employed to identify bacterial and eukaryotic communities on the polymer surfaces. Statistical analyses show that there were no polymer-specific assemblages for prokaryotes or eukaryotes, but rather a microbial core community that was shared among plastic types. I also found that rare hydrocarbon degrading bacteria may be specific to certain chemical properties of the microplastics. Statistical comparisons of the communities across both sites showed that prokaryotic plastispheres were shaped primarily by incubation time and geographic location. Finally, I assessed the impact of biofilms on microplastic degradation and deposition and conclude that biofilms enhance microplastic sinking of negatively buoyant particles and reduce microplastic degradation. The results of my dissertation increases understanding of the factors that shape the plastisphere and how these communities ultimately determine the fate of microplastics in the marine environment.
ContributorsDudek, Kassandra Lynn (Author) / Neuer, Susanne (Thesis advisor) / Polidoro, Beth (Committee member) / Garcia-Pichel, Ferran (Committee member) / Cao, Huansheng (Committee member) / Arizona State University (Publisher)
Created2021
149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
150180-Thumbnail Image.png
Description
The oceans play an essential role in global biogeochemical cycles and in regulating climate. The biological carbon pump, the photosynthetic fixation of carbon dioxide by phytoplankton and subsequent sequestration of organic carbon into deep water, combined with the physical carbon pump, make the oceans the only long-term net sink for

The oceans play an essential role in global biogeochemical cycles and in regulating climate. The biological carbon pump, the photosynthetic fixation of carbon dioxide by phytoplankton and subsequent sequestration of organic carbon into deep water, combined with the physical carbon pump, make the oceans the only long-term net sink for anthropogenic carbon dioxide. A full understanding of the workings of the biological carbon pump requires a knowledge of the role of different taxonomic groups of phytoplankton (protists and cyanobacteria) to organic carbon export. However, this has been difficult due to the degraded nature of particles sinking into particle traps, the main tools employed by oceanographers to collect sinking particulate matter in the ocean. In this study DNA-based molecular methods, including denaturing gradient gel electrophoresis, cloning and sequencing, and taxon-specific quantitative PCR, allowed for the first time for the identification of which protists and cyanobacteria contributed to the material collected by the traps in relation to their presence in the euphotic zone. I conducted this study at two time-series stations in the subtropical North Atlantic Ocean, one north of the Canary Islands, and one located south of Bermuda. The Bermuda study allowed me to investigate seasonal and interannual changes in the contribution of the plankton community to particle flux. I could also show that small unarmored taxa, including representatives of prasinophytes and cyanobacteria, constituted a significant fraction of sequences recovered from sediment trap material. Prasinophyte sequences alone could account for up to 13% of the clone library sequences of trap material during bloom periods. These observations contradict a long-standing paradigm in biological oceanography that only large taxa with mineral shells are capable of sinking while smaller, unarmored cells are recycled in the euphotic zone through the microbial loop. Climate change and a subsequent warming of the surface ocean may lead to a shift in the protist community toward smaller cell size in the future, but in light of these findings these changes may not necessarily lead to a reduction in the strength of the biological carbon pump.
ContributorsAmacher, Jessica (Author) / Neuer, Susanne (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Lomas, Michael (Committee member) / Wojciechowski, Martin (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2011
151868-Thumbnail Image.png
Description
Microbial electrochemical cells (MXCs) are promising platforms for bioenergy production from renewable resources. In these systems, specialized anode-respiring bacteria (ARB) deliver electrons from oxidation of organic substrates to the anode of an MXC. While much progress has been made in understanding the microbiology, physiology, and electrochemistry of well-studied model ARB

Microbial electrochemical cells (MXCs) are promising platforms for bioenergy production from renewable resources. In these systems, specialized anode-respiring bacteria (ARB) deliver electrons from oxidation of organic substrates to the anode of an MXC. While much progress has been made in understanding the microbiology, physiology, and electrochemistry of well-studied model ARB such as Geobacter and Shewanella, tremendous potential exists for MXCs as microbiological platforms for exploring novel ARB. This dissertation introduces approaches for selective enrichment and characterization of phototrophic, halophilic, and alkaliphilic ARB. An enrichment scheme based on manipulation of poised anode potential, light, and nutrient availability led to current generation that responded negatively to light. Analysis of phototrophically enriched communities suggested essential roles for green sulfur bacteria and halophilic ARB in electricity generation. Reconstruction of light-responsive current generation could be successfully achieved using cocultures of anode-respiring Geobacter and phototrophic Chlorobium isolated from the MXC enrichments. Experiments lacking exogenously supplied organic electron donors indicated that Geobacter could produce a measurable current from stored photosynthate in the dark. Community analysis of phototrophic enrichments also identified members of the novel genus Geoalkalibacter as potential ARB. Electrochemical characterization of two haloalkaliphilic, non-phototrophic Geoalkalibacter spp. showed that these bacteria were in fact capable of producing high current densities (4-8 A/m2) and using higher organic substrates under saline or alkaline conditions. The success of these selective enrichment approaches and community analyses in identifying and understanding novel ARB capabilities invites further use of MXCs as robust platforms for fundamental microbiological investigations.
ContributorsBadalamenti, Jonathan P (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Rittmann, Bruce E. (Committee member) / Torres, César I (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2013