Matching Items (67)
155139-Thumbnail Image.png
Description
Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction

Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is αMβ2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering quantitative insights.
ContributorsChristenson, Wayne B (Author) / Ros, Robert (Thesis advisor) / Beckstein, Oliver (Committee member) / Lindsay, Stuart (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2016
155010-Thumbnail Image.png
Description
Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot

Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot systems, when a magnetic field is present, as the Fermi energy or the magnetic flux is varied, both regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between the two. Secondly, a scheme based on geometrical rotation of rectangular devices to effectively modulate the conductance fluctuations is presented. Thirdly, when graphene is placed on a substrate of heavy metal, Rashba spin-orbit interaction of substantial strength can occur. In an open system such as a quantum dot, the interaction can induce spin polarization. Finally, a problem using graphene systems with electron-electron interactions described by the Hubbard Hamiltonian in the setting of resonant tunneling is investigated.

Another interesting problem in quantum transport is the effect of disorder or random impurities since it is inevitable in real experiments. At first, for a twodimensional Dirac ring, as the disorder density is systematically increased, the persistent current decreases slowly initially and then plateaus at a finite nonzero value, indicating remarkable robustness of the persistent currents, which cannot be discovered in normal metal and semiconductor rings. In addition, in a Floquet system with a ribbon structure, the conductance can be remarkably enhanced by onsite disorder.

Recent years have witnessed significant interest in nanoscale physical systems, such as semiconductor supperlattices and optomechanical systems, which can exhibit distinct collective dynamical behaviors. Firstly, a system of two optically coupled optomechanical cavities is considered and the phenomenon of synchronization transition associated with quantum entanglement transition is discovered. Another useful issue is nonlinear dynamics in semiconductor superlattices caused by its key potential application lies in generating radiation sources, amplifiers and detectors in the spectral range of terahertz. In such a system, transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt.
ContributorsYing, Lei (Author) / Lai, Ying-Cheng (Thesis advisor) / Vasileska, Dragica (Committee member) / Chen, Tingyong (Committee member) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2016
152484-Thumbnail Image.png
Description
In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD

In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD dielectrics on GaN, and (3) interface electronic structure of PEALD dielectrics on Ga- and N-face GaN. The first study involved an in-depth case study of PEALD Al2O3 growth using dimethylaluminum isopropoxide, with a special focus on oxygen plasma effects. Saturated and self-limiting growth of Al2O3 films were obtained with an enhanced growth rate within the PEALD temperature window (25-220 ºC). The properties of Al2O3 deposited at various temperatures were characterized to better understand the relation between the growth parameters and film properties. In the second study, the interface electronic structures of PEALD dielectrics on Ga-face GaN films were measured. Five promising dielectrics (Al2O3, HfO2, SiO2, La2O3, and ZnO) with a range of band gap energies were chosen. Prior to dielectric growth, a combined wet chemical and in-situ H2/N2 plasma clean process was employed to remove the carbon contamination and prepare the surface for dielectric deposition. The surface band bending and band offsets were measured by XPS and UPS for dielectrics on GaN. The trends of the experimental band offsets on GaN were related to the dielectric band gap energies. In addition, the experimental band offsets were near the calculated values based on the charge neutrality level model. The third study focused on the effect of the polarization bound charge of the Ga- and N-face GaN on interface electronic structures. A surface pretreatment process consisting of a NH4OH wet chemical and an in-situ NH3 plasma treatment was applied to remove carbon contamination, retain monolayer oxygen coverage, and potentially passivate N-vacancy related defects. The surface band bending and polarization charge compensation of Ga- and N-face GaN were investigated. The surface band bending and band offsets were determined for Al2O3, HfO2, and SiO2 on Ga- and N-face GaN. Different dielectric thicknesses and post deposition processing were investigated to understand process related defect formation and/or reduction.
ContributorsYang, Jialing (Author) / Nemanich, Robert J (Thesis advisor) / Chen, Tingyong (Committee member) / Peng, Xihong (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2014
153568-Thumbnail Image.png
Description
Driven by the curiosity for the secret of life, the effort on sequencing of DNAs and other large biopolymers has never been respited. Advanced from recent sequencing techniques, nanotube and nanopore based sequencing has been attracting much attention. This thesis focuses on the study of first and crucial compartment of

Driven by the curiosity for the secret of life, the effort on sequencing of DNAs and other large biopolymers has never been respited. Advanced from recent sequencing techniques, nanotube and nanopore based sequencing has been attracting much attention. This thesis focuses on the study of first and crucial compartment of the third generation sequencing technique, the capture and translocation of biopolymers, and discuss the advantages and obstacles of two different nanofluidic pathways, nanotubes and nanopores for single molecule capturing and translocation. Carbon nanotubes with its constrained structure, the frictionless inner wall and strong electroosmotic flow, are promising materials for linearly threading DNA and other biopolymers for sequencing. Solid state nanopore on the other hand, is a robust chemical, thermal and mechanical stable nanofluidic device, which has a high capturing rate and, to some extent, good controllable threading ability for DNA and other biomolecules. These two different but similar nanofluidic pathways both provide a good preparation of analyte molecules for the sequencing purpose. In addition, more and more research interests have move onto peptide chains and protein sensing. For proteome is better and more direct indicators for human health, peptide chains and protein sensing have a much wider range of applications on bio-medicine, disease early diagnoses, and etc. A universal peptide chain nanopore sensing technique with universal chemical modification of peptides is discussed in this thesis as well, which unifies the nanopore capturing process for vast varieties of peptides. Obstacles of these nanofluidic pathways are also discussed. In the end of this thesis, a proposal of integration of solid state nanopore and fixed-gap recognition tunneling sequencing technique for a more accurate DNA and peptide readout is discussed, together with some early study work, which gives a new direction for nanopore based sequencing.
ContributorsSong, Weisi (Author) / Lindsay, Stuart (Thesis advisor) / Ros, Robert (Committee member) / Qing, Quan (Committee member) / Zhang, Peiming (Committee member) / Arizona State University (Publisher)
Created2015
153462-Thumbnail Image.png
Description
Calcitonin Gene-Related Peptide (CGRP) is an intrinsically disordered protein

that has no regular secondary structure, but plays an important role in vasodilation and pain transmission in migraine. Little is known about the structure and dynamics of the monomeric state of CGRP or how CGRP is able to function in the cell,

Calcitonin Gene-Related Peptide (CGRP) is an intrinsically disordered protein

that has no regular secondary structure, but plays an important role in vasodilation and pain transmission in migraine. Little is known about the structure and dynamics of the monomeric state of CGRP or how CGRP is able to function in the cell, despite the lack of regular secondary structure. This work focuses characterizing the non-local structural and dynamical properties of the CGRP monomer in solution, and understanding how these are affected by the sequence and the solution environment. The unbound, free state of CGRP is measured using a nanosecond laser-pump spectrophotometer, which allows measuring the end-to-end distance (a non-local structural property) and the rate of end-to-end contact formation (intra-chain diffusional dynamics). The data presented in this work show that electrostatic interactions strongly modulate the structure of CGRP, and that peptide-solvent interactions are sequence and charge dependent and can have a significant effect on the internal dynamics of the peptide. In the last few years migraine research has shifted focus to disrupting the CGRP-receptor pathway through the design of pharmacological drugs that bind to either CGRP or its receptor, inhibiting receptor activation and therefore preventing or reducing the frequency of migraine attacks. Understanding what types of intra- and inter-chain interactions dominate in CGRP can help better design drugs that disrupt the binding of CGRP to its receptor.
ContributorsSizemore, Sara (Author) / Vaiana, Sara (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Ros, Robert (Committee member) / Lindsay, Stuart (Committee member) / Ozkan, Sefika (Committee member) / Arizona State University (Publisher)
Created2015
153466-Thumbnail Image.png
Description
Fluorescence spectroscopy is a popular technique that has been particularly useful in probing biological systems, especially with the invention of single molecule fluorescence. For example, Förster resonance energy transfer (FRET) is one tool that has been helpful in probing distances and conformational changes in biomolecules. In this work, important properties

Fluorescence spectroscopy is a popular technique that has been particularly useful in probing biological systems, especially with the invention of single molecule fluorescence. For example, Förster resonance energy transfer (FRET) is one tool that has been helpful in probing distances and conformational changes in biomolecules. In this work, important properties necessary in the quantification of FRET were investigated while FRET was also applied to gain insight into the dynamics of biological molecules. In particular, dynamics of damaged DNA was investigated. While damages in DNA are known to affect DNA structure, what remains unclear is how the presence of a lesion, or multiple lesions, affects the flexibility of DNA, especially in relation to damage recognition by repair enzymes. DNA conformational dynamics was probed by combining FRET and fluorescence anisotropy along with biochemical assays. The focus of this work was to investigate the relationship between dynamics and enzymatic repair. In addition, to properly quantify fluorescence and FRET data, photophysical phenomena of fluorophores, such as blinking, needs to be understood. The triplet formation of the single molecule dye TAMRA and the photoisomerization yield of two different modifications of the single molecule cyanine dye Cy3 were examined spectroscopically to aid in accurate data interpretation. The combination of the biophysical and physiochemical studies illustrates how fluorescence spectroscopy can be used to answer biological questions.
ContributorsShepherd Stennett, Elana Maria (Author) / Levitus, Marcia (Thesis advisor) / Ros, Robert (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2015
153458-Thumbnail Image.png
Description
Biophysical techniques have been increasingly applied toward answering biological questions with more precision. Here, three different biological systems were studied with the goal of understanding their dynamic differences, either conformational dynamics within the system or oligomerization dynamics between monomers. With Cy3 on the 5' end of DNA, the

Biophysical techniques have been increasingly applied toward answering biological questions with more precision. Here, three different biological systems were studied with the goal of understanding their dynamic differences, either conformational dynamics within the system or oligomerization dynamics between monomers. With Cy3 on the 5' end of DNA, the effects of changing the terminal base pair were explored using temperature-dependent quantum yields. It was discovered, in combination with simulations, that a terminal thymine base has the weakest stacking interactions with the Cy3 dye compared to the other three bases. With ME1 heterodimers, the goal was to see if engineering a salt bridge at the dimerization interface could allow for control over dimerization in a pH-dependent manner. This was performed experimentally by measuring FRET between monomers containing either a Dap or an Asp mutation and comparing FRET efficiency at different pHs. It was demonstrated that the heterodimeric salt bridge would only form in a pH range near neutrality. Finally, with DNA processivity clamps, one aim was to compare the equilibrium dissociation constants, kinetic rate constants, and lifetimes of the closed rings for beta clamp and PCNA. This was done using a variety of biophysical techniques but with three as the main focus: fluorescence correlation spectroscopy, single-molecule experiments, and time-correlated single photon counting measurements. The stability of beta clamp was found to be three orders of magnitude higher when measuring solution stability but only one order of magnitude higher when measuring intrinsic stability, which is a result of salt bridge interactions in the interface of beta clamp. Ongoing work built upon the findings from this project by attempting to disrupt interface stability of different beta clamp mutants by adding salt or changing the pH of the solution. Lingering questions about the dynamics of different areas of the clamps has led to another project for which we have developed a control to demystify some unexpected similarities between beta clamp mutants. With that project, we show that single-labeled and double-labeled samples have similar autocorrelation decays in florescence correlation spectroscopy, allowing us to rule out the dyes themselves as causing fluctuations in the 10-100 microsecond timescale.
ContributorsBinder, Jennifer (Author) / Levitus, Marcia (Thesis advisor) / Wachter, Rebekka (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2015
152998-Thumbnail Image.png
Description
An animal's ability to produce protein-based silk materials has evolved independently in many different arthropod lineages, satisfying various ecological necessities. However, regardless of their wide range of uses and their potential industrial and biomedical applications, advanced knowledge on the molecular structure of silk biopolymers is largely limited to those produced

An animal's ability to produce protein-based silk materials has evolved independently in many different arthropod lineages, satisfying various ecological necessities. However, regardless of their wide range of uses and their potential industrial and biomedical applications, advanced knowledge on the molecular structure of silk biopolymers is largely limited to those produced by spiders (order Araneae) and silkworms (order Lepidoptera). This thesis provides an in-depth molecular-level characterization of silk fibers produced by two vastly different insects: the caddisfly larvae (order Trichoptera) and the webspinner (order Embioptera).

The molecular structure of caddisfly larval silk from the species Hesperophylax consimilis was characterized using solid-state nuclear magnetic resonance (ss-NMR) and Wide Angle X-ray Diffraction (WAXD) techniques. This insect, which typically dwells in freshwater riverbeds and streams, uses silk fibers as a strong and sticky nanoadhesive material to construct cocoons and cases out available debris. Conformation-sensitive 13C chemical shifts and 31P chemical shift anisotropy (CSA) information strongly support a unique protein motif in which phosphorylated serine- rich repeats (pSX)4 complex with di- and trivalent cations to form rigid nanocrystalline β-sheets. Additionally, it is illustrated through 31P NMR and WAXD data that these nanocrystalline structures can be reversibly formed, and depend entirely on the presence of the stabilizing cations.

Nanofiber silks produced by webspinners (order Embioptera) were also studied herein. This work addresses discrepancies in the literature regarding fiber diameters and tensile properties, revealing that the nanofibers are about 100 nm in diameter, and are stronger (around 500 MPa mean ultimate stress) than previous works suggested. Fourier-transform Infrared Spectroscopy (FT-IR), NMR and WAXD results find that approximately 70% of the highly repetitive glycine- and serine-rich protein core is composed of β-sheet nanocrystalline structures. In addition, FT-IR and Gas-chromatography mass spectroscopy (GC-MS) data revealed a hydrophobic surface coating rich in long-chain lipids. The effect of this surface coating was studied with contact angle techniques; it is shown that the silk sheets are extremely hydrophobic, yet due to the microstructural and nanostructural details of the silk surface, are surprisingly adhesive to water.
ContributorsAddison, John Bennett (Author) / Yarger, Jeffery L (Thesis advisor) / Holland, Gregory P (Thesis advisor) / Wang, Xu (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2014
152848-Thumbnail Image.png
Description
Single molecule identification is one essential application area of nanotechnology. The application areas including DNA sequencing, peptide sequencing, early disease detection and other industrial applications such as quantitative and quantitative analysis of impurities, etc. The recognition tunneling technique we have developed shows that after functionalization of the probe and substrate

Single molecule identification is one essential application area of nanotechnology. The application areas including DNA sequencing, peptide sequencing, early disease detection and other industrial applications such as quantitative and quantitative analysis of impurities, etc. The recognition tunneling technique we have developed shows that after functionalization of the probe and substrate of a conventional Scanning Tunneling Microscope with recognition molecules ("tethered molecule-pair" configuration), analyte molecules trapped in the gap that is formed by probe and substrate will bond with the reagent molecules. The stochastic bond formation/breakage fluctuations give insight into the nature of the intermolecular bonding at a single molecule-pair level. The distinct time domain and frequency domain features of tunneling signals were extracted from raw signals of analytes such as amino acids and their enantiomers. The Support Vector Machine (a machine-learning method) was used to do classification and predication based on the signal features generated by analytes, giving over 90% accuracy of separation of up to seven analytes. This opens up a new interface between chemistry and electronics with immediate implications for rapid Peptide/DNA sequencing and molecule identification at single molecule level.
ContributorsZhao, Yanan, 1986- (Author) / Lindsay, Stuart (Thesis advisor) / Nemanich, Robert (Committee member) / Qing, Quan (Committee member) / Ros, Robert (Committee member) / Zhang, Peiming (Committee member) / Arizona State University (Publisher)
Created2014
152850-Thumbnail Image.png
Description
This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other

This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other hand grow out of the plane of substrate. It was found, using the Au-seeded vapor – liquid – solid technique, that epitaxial single-crystal SiNW can be grown laterally along Si(111) substrates that have been miscut toward [11− 2]. The ratio of lateral-to-vertical NW was found to increase as the miscut angle increased and as disilane pressure and substrate temperature decreased. Based on this observation, growth parameters were identified whereby all of the deposited Au seeds formed lateral NW. Furthermore, the nanofaceted substrate guided the growth via a mechanism that involved pinning of the trijunction at the liquid/solid interface of the growing nanowire.

Next, the growth of selenide heterostructures was explored. Specifically, molecular beam epitaxy was utilized to grow In2Se3 and Bi2Se3 films on h-BN, highly oriented pyrolytic graphite and Si(111) substrates. Growth optimizations of In2Se3 and Bi2Se3 films were carried out by systematically varying the growth parameters. While the growth of these films was demonstrated on h-BN and HOPG surface, the majority of the effort was focused on growth on Si(111). Atomically flat terraces that extended laterally for several hundred nm, which were separated by single quintuple layer high steps characterized surface of the best In2Se3 films grown on Si(111). These In2Se3 films were suitable for subsequent high quality epitaxy of Bi2Se3 .

The last part of this dissertation was focused on a recently initiated and ongoing study of graphene growth on liquid metal surfaces. The initial part of the study comprised a successful modification of an existing growth system to accommodate graphene synthesis and process development for reproducible graphene growth. Graphene was grown on Cu, Au and AuCu alloys at varioua conditions. Preliminary results showed triangular features on the liquid part of the Cu metal surface. For Au, and AuCu alloys, hexagonal features were noticed both on the solid and liquid parts.
ContributorsRathi, Somilkumar J (Author) / Drucker, Jeffery (Thesis advisor) / Smith, David (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2014