Matching Items (9)
Filtering by

Clear all filters

129586-Thumbnail Image.png
Description

Recently fabricated two-dimensional phosphorene crystal structures have demonstrated great potential in applications of electronics. In this paper, strain effect on the electronic band structure of phosphorene was studied using first-principles methods including density functional theory (DFT) and hybrid functionals. It was found that phosphorene can withstand a tensile stress and

Recently fabricated two-dimensional phosphorene crystal structures have demonstrated great potential in applications of electronics. In this paper, strain effect on the electronic band structure of phosphorene was studied using first-principles methods including density functional theory (DFT) and hybrid functionals. It was found that phosphorene can withstand a tensile stress and strain up to 10 N/m and 30%, respectively. The band gap of phosphorene experiences a direct-indirect-direct transition when axial strain is applied. A moderate −2% compression in the zigzag direction can trigger this gap transition. With sufficient expansion (+11.3%) or compression (−10.2% strains), the gap can be tuned from indirect to direct again. Five strain zones with distinct electronic band structure were identified, and the critical strains for the zone boundaries were determined. Although the DFT method is known to underestimate band gap of semiconductors, it was proven to correctly predict the strain effect on the electronic properties with validation from a hybrid functional method in this work. The origin of the gap transition was revealed, and a general mechanism was developed to explain energy shifts with strain according to the bond nature of near-band-edge electronic orbitals. Effective masses of carriers in the armchair direction are an order of magnitude smaller than that of the zigzag axis, indicating that the armchair direction is favored for carrier transport. In addition, the effective masses can be dramatically tuned by strain, in which its sharp jump/drop occurs at the zone boundaries of the direct-indirect gap transition.

ContributorsPeng, Xihong (Author) / Wei, Qun (Author) / Copple, Andrew (Author) / College of Integrative Sciences and Arts (Contributor)
Created2014-08-04
129350-Thumbnail Image.png
Description

The existence of a cosmological magnetic field could be revealed by the effects of non-trivial helicity on large scales. We evaluate a CP (conjugation plus parity) odd statistic, Q, using gamma-ray data obtained from Fermi satellite observations at high galactic latitudes to search for such a signature. Observed values of

The existence of a cosmological magnetic field could be revealed by the effects of non-trivial helicity on large scales. We evaluate a CP (conjugation plus parity) odd statistic, Q, using gamma-ray data obtained from Fermi satellite observations at high galactic latitudes to search for such a signature. Observed values of Q are found to be non-zero; the probability of a similar signal in Monte Carlo simulations is ∼0.2 per cent. Contamination from the Milky Way does not seem to be responsible for the signal since it is present even for data at very high galactic latitudes. Assuming that the signal is indeed due to a helical cosmological magnetic field, our results indicate left-handed magnetic helicity and field strength ∼10-14 G on ∼10 Mpc scales.

ContributorsTashiro, Hiroyuki (Author) / Chen, Wenlei (Author) / Ferrer, Francesc (Author) / Vachaspati, Tanmay (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-21
129126-Thumbnail Image.png
Description

We explore some particle physics implications of the growing evidence for a helical primordial magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the monopole number density, nðt0Þ < 1 × 10−20 cm−3, which is a “primordial” analog of the Parker

We explore some particle physics implications of the growing evidence for a helical primordial magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the monopole number density, nðt0Þ < 1 × 10−20 cm−3, which is a “primordial” analog of the Parker bound for the survival of galactic magnetic fields. Our bound is weaker than existing constraints, but it is derived under independent assumptions. We also show how improved measurements of the PMF at different redshifts can lead to further constraints on magnetic monopoles. Axions interact with the PMF due to the gaγφE · B=4π interaction. Including the effects of the cosmological plasma, we find that the helicity of the PMF is a source for the axion field. Although the magnitude of the source is small for the PMF, it could potentially be of interest in astrophysical environments. Earlier derived constraints from the resonant conversion of cosmic microwave background photons into axions lead to gaγ ≲ 10−9 GeV−1 for the suggested PMF strength ∼10−14 G and coherence length ∼10 Mpc. Finally, we apply constraints on the neutrino magnetic dipole moment that arise from requiring successful big bang nucleosynthesis in the presence of a PMF, and we find μν ≲ 10−16 μB.

ContributorsLong, Andrew J. (Author) / Vachaspati, Tanmay (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-05-20
128291-Thumbnail Image.png
Description

An unconventional iron superconductor, SmO0.7F0.3FeAs, has been utilized to determine the spin polarization and temperature dependence of a highly spin-polarized material, La0.67Sr0.33MnO3, with Andreev reflection spectroscopy. The polarization value obtained is the same as that determined using a conventional superconductor Pb but the temperature dependence of the spin polarization can

An unconventional iron superconductor, SmO0.7F0.3FeAs, has been utilized to determine the spin polarization and temperature dependence of a highly spin-polarized material, La0.67Sr0.33MnO3, with Andreev reflection spectroscopy. The polarization value obtained is the same as that determined using a conventional superconductor Pb but the temperature dependence of the spin polarization can be measured up to 52 K, a temperature range, which is several times wider than that using a typical conventional superconductor. The result excludes spin-parallel triplet pairing in the iron superconductor.

ContributorsGifford, Jessica (Author) / Chen, B. B. (Author) / Zhang, Ji (Author) / Zhao, Gejian (Author) / Kim, Dongrin (Author) / Li, Bochao (Author) / Wu, D. (Author) / Chen, Tingyong (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-11-21
128269-Thumbnail Image.png
Description

Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100) substrates and annealed at high temperatures. However, the spin polarization is considerably

Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100) substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

ContributorsVahidi, Mahmoud (Author) / Gifford, Jessica (Author) / Zhang, Shengke (Author) / Krishnamurthy, S. (Author) / Yu, Z. G. (Author) / Lei, Yu (Author) / Huang, Mengchu (Author) / Youngbull, Cody (Author) / Chen, Tingyong (Author) / Newman, Nathan (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-04-15
128060-Thumbnail Image.png
Description

The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure

The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

ContributorsGifford, Jessica (Author) / Zhao, Gejian (Author) / Li, Bochao (Author) / Tracy, Brian (Author) / Zhang, Ji (Author) / Kim, Dongrin (Author) / Chen, Tingyong (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-23
128068-Thumbnail Image.png
Description

The quantum anomalous Hall effect (QAHE) that emerges under broken time-reversal symmetry in topological insulators (TIs) exhibits many fascinating physical properties for potential applications in nanoelectronics and spintronics. However, in transition metal–doped TIs, the only experimentally demonstrated QAHE system to date, the QAHE is lost at practically relevant temperatures. This

The quantum anomalous Hall effect (QAHE) that emerges under broken time-reversal symmetry in topological insulators (TIs) exhibits many fascinating physical properties for potential applications in nanoelectronics and spintronics. However, in transition metal–doped TIs, the only experimentally demonstrated QAHE system to date, the QAHE is lost at practically relevant temperatures. This constraint is imposed by the relatively low Curie temperature (T[subscript c]) and inherent spin disorder associated with the random magnetic dopants. We demonstrate drastically enhanced T[subscript c] by exchange coupling TIs to Tm[subscript 3]Fe[subscript 5]O[subscript 12], a high-T[subscript c] magnetic insulator with perpendicular magnetic anisotropy. Signatures showing that the TI surface states acquire robust ferromagnetism are revealed by distinct squared anomalous Hall hysteresis loops at 400 K. Point-contact Andreev reflection spectroscopy confirms that the TI surface is spin-polarized. The greatly enhanced T[subscript c], absence of spin disorder, and perpendicular anisotropy are all essential to the occurrence of the QAHE at high temperatures.

ContributorsTang, Chi (Author) / Chang, Cui-Zu (Author) / Zhao, Gejian (Author) / Liu, Yawen (Author) / Jiang, Zilong (Author) / Liu, Chao-Xing (Author) / McCartney, Martha (Author) / Smith, David (Author) / Chen, Tingyong (Author) / Moodera, Jagadeesh S. (Author) / Shi, Jing (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-06-23
128007-Thumbnail Image.png
Description

Various biologically inspired flow field designs of the gas distributor (interconnector) have been designed and simulated. Their performance using Nafion-212 with humidified H2 and Air at 80 °C with the ANSYS Fluent Fuel Cell module software was evaluated. Novel interdigitated designs were optimized by obeying biologically inspired branching rules. These

Various biologically inspired flow field designs of the gas distributor (interconnector) have been designed and simulated. Their performance using Nafion-212 with humidified H2 and Air at 80 °C with the ANSYS Fluent Fuel Cell module software was evaluated. Novel interdigitated designs were optimized by obeying biologically inspired branching rules. These rules allow for more mathematically formal descriptions of flow field designs, enabling relatively simple optimization. The channel to land ratio was kept equivalent between designs with typical values between 0.8 and 1.0. The pressure drop and the current density distribution were monitored for each design on both anode and cathode sides. The most promising designs are expected to exhibit lower pressure drop however, low pressure drop can also be an indication of potential water flooding at higher operating current density. A biologically inspired interdigitated design with 9 inlet channels exhibited reduced pressure drop and improved current density distribution compared to all other interdigitated designs evaluated in this study. The simulated fuel cell performance data at ambient pressure with humidified H2 and air compares well with the experimental data using a single serpentine flow field design.

ContributorsArvay, Adam (Author) / French, Jason (Author) / Wang, Jui-Chieh (Author) / Peng, Xihong (Author) / Kannan, Arunachala Mada (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015
129138-Thumbnail Image.png
Description

Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of

Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV . Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 1013 GeV to 1015 GeV are at tension with nucleosynthesis constraints.

ContributorsLong, Andrew (Author) / Vachaspati, Tanmay (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01