Matching Items (45)
149950-Thumbnail Image.png
Description
With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in

With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in teamwork, and team members' movement and face-to-face interaction strength in the wild. Using sociometric badges (wearable sensors), electronic Experience Sampling Methods (ESM), the KEYS team creativity assessment instrument, and qualitative methods, three research studies were conducted in academic and industry R&D; labs. Sociometric badges captured movement of team members and face-to-face interaction between team members. KEYS scale was implemented using ESM for self-rated creativity and expert-coded creativity assessment. Activities (movement and face-to-face interaction) and creativity of one five member and two seven member teams were tracked for twenty five days, eleven days, and fifteen days respectively. Day wise values of movement and face-to-face interaction for participants were mean split categorized as creative and non-creative using self- rated creativity measure and expert-coded creativity measure. Paired-samples t-tests [t(36) = 3.132, p < 0.005; t(23) = 6.49 , p < 0.001] confirmed that average daily movement energy during creative days (M = 1.31, SD = 0.04; M = 1.37, SD = 0.07) was significantly greater than the average daily movement of non-creative days (M = 1.29, SD = 0.03; M = 1.24, SD = 0.09). The eta squared statistic (0.21; 0.36) indicated a large effect size. A paired-samples t-test also confirmed that face-to-face interaction tie strength of team members during creative days (M = 2.69, SD = 4.01) is significantly greater [t(41) = 2.36, p < 0.01] than the average face-to-face interaction tie strength of team members for non-creative days (M = 0.9, SD = 2.1). The eta squared statistic (0.11) indicated a large effect size. The combined approach of principal component analysis (PCA) and linear discriminant analysis (LDA) conducted on movement and face-to-face interaction data predicted creativity with 87.5% and 91% accuracy respectively. This work advances creativity research and provides a foundation for sensor based real-time creativity support tools for teams.
ContributorsTripathi, Priyamvada (Author) / Burleson, Winslow (Thesis advisor) / Liu, Huan (Committee member) / VanLehn, Kurt (Committee member) / Pentland, Alex (Committee member) / Arizona State University (Publisher)
Created2011
150224-Thumbnail Image.png
Description
Lots of previous studies have analyzed human tutoring at great depths and have shown expert human tutors to produce effect sizes, which is twice of that produced by an intelligent tutoring system (ITS). However, there has been no consensus on which factor makes them so effective. It is important to

Lots of previous studies have analyzed human tutoring at great depths and have shown expert human tutors to produce effect sizes, which is twice of that produced by an intelligent tutoring system (ITS). However, there has been no consensus on which factor makes them so effective. It is important to know this, so that same phenomena can be replicated in an ITS in order to achieve the same level of proficiency as expert human tutors. Also, to the best of my knowledge no one has looked at student reactions when they are working with a computer based tutor. The answers to both these questions are needed in order to build a highly effective computer-based tutor. My research focuses on the second question. In the first phase of my thesis, I analyzed the behavior of students when they were working with a step-based tutor Andes, using verbal-protocol analysis. The accomplishment of doing this was that I got to know of some ways in which students use a step-based tutor which can pave way for the creation of more effective computer-based tutors. I found from the first phase of the research that students often keep trying to fix errors by guessing repeatedly instead of asking for help by clicking the hint button. This phenomenon is known as hint refusal. Surprisingly, a large portion of the student's foundering was due to hint refusal. The hypothesis tested in the second phase of the research is that hint refusal can be significantly reduced and learning can be significantly increased if Andes uses more unsolicited hints and meta hints. An unsolicited hint is a hint that is given without the student asking for one. A meta-hint is like an unsolicited hint in that it is given without the student asking for it, but it just prompts the student to click on the hint button. Two versions of Andes were compared: the original version and a new version that gave more unsolicited and meta-hints. During a two-hour experiment, there were large, statistically reliable differences in several performance measures suggesting that the new policy was more effective.
ContributorsRanganathan, Rajagopalan (Author) / VanLehn, Kurt (Thesis advisor) / Atkinson, Robert (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
150234-Thumbnail Image.png
Description
Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality

Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts - abstraction, arrays of objects, and inheritance - in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.
ContributorsBillionniere, Elodie V (Author) / Collofello, James (Thesis advisor) / Ganesh, Tirupalavanam G. (Thesis advisor) / VanLehn, Kurt (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
150293-Thumbnail Image.png
Description
Strong communities are important for society. One of the most important community builders, making friends, is poorly supported online. Dating sites support it but in romantic contexts. Other major social networks seem not to encourage it because either their purpose isn't compatible with introducing strangers or the prevalent methods of

Strong communities are important for society. One of the most important community builders, making friends, is poorly supported online. Dating sites support it but in romantic contexts. Other major social networks seem not to encourage it because either their purpose isn't compatible with introducing strangers or the prevalent methods of introduction aren't effective enough to merit use over real word alternatives. This paper presents a novel digital social network emphasizing creating friendships. Research has shown video chat communication can reach in-person levels of trust; coupled with a game environment to ease the discomfort people often have interacting with strangers and a recommendation engine, Zazzer, the presented system, allows people to meet and get to know each other in a manner much more true to real life than traditional methods. Its network also allows players to continue to communicate afterwards. The evaluation looks at real world use, measuring the frequency with which players choose the video chat game versus alternative, more traditional methods of online introduction. It also looks at interactions after the initial meeting to discover how effective video chat games are in creating sticky social connections. After initial use it became apparent a critical mass of users would be necessary to draw strong conclusions, however the collected data seemed to give preliminary support to the idea that video chat games are more effective than traditional ways of meeting online in creating new relationships.
ContributorsSorensen, Asael (Author) / VanLehn, Kurt (Thesis advisor) / Liu, Huan (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
152168-Thumbnail Image.png
Description
There has been a lot of research in the field of artificial intelligence about thinking machines. Alan Turing proposed a test to observe a machine's intelligent behaviour with respect to natural language conversation. The Winograd schema challenge is suggested as an alternative, to the Turing test. It needs inferencing capabilities,

There has been a lot of research in the field of artificial intelligence about thinking machines. Alan Turing proposed a test to observe a machine's intelligent behaviour with respect to natural language conversation. The Winograd schema challenge is suggested as an alternative, to the Turing test. It needs inferencing capabilities, reasoning abilities and background knowledge to get the answer right. It involves a coreference resolution task in which a machine is given a sentence containing a situation which involves two entities, one pronoun and some more information about the situation and the machine has to come up with the right resolution of a pronoun to one of the entities. The complexity of the task is increased with the fact that the Winograd sentences are not constrained by one domain or specific sentence structure and it also contains a lot of human proper names. This modification makes the task of association of entities, to one particular word in the sentence, to derive the answer, difficult. I have developed a pronoun resolver system for the confined domain Winograd sentences. I have developed a classifier or filter which takes input sentences and decides to accept or reject them based on a particular criteria. Once the sentence is accepted. I run parsers on it to obtain the detailed analysis. Furthermore I have developed four answering modules which use world knowledge and inferencing mechanisms to try and resolve the pronoun. The four techniques I use are : ConceptNet knowledgebase, Search engine pattern counts,Narrative event chains and sentiment analysis. I have developed a particular aggregation mechanism for the answers from these modules to arrive at a final answer. I have used caching technique for the association relations that I obtain for different modules, so as to boost the performance. I run my system on the standard ‘nyu dataset’ of Winograd sentences and questions. This dataset is then restricted, by my classifier, to 90 sentences. I evaluate my system on this 90 sentence dataset. When I compare my results against the state of the art system on the same dataset, I get nearly 4.5 % improvement in the restricted domain.
ContributorsBudukh, Tejas Ulhas (Author) / Baral, Chitta (Thesis advisor) / VanLehn, Kurt (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013
152047-Thumbnail Image.png
Description
Chemistry as a subject is difficult to learn and understand, due in part to the specific language used by practitioners in their professional and scientific communications. The language and ways of representing chemical interactions have been grouped into three modes of representation used by chemistry instructors, and ultimately by students

Chemistry as a subject is difficult to learn and understand, due in part to the specific language used by practitioners in their professional and scientific communications. The language and ways of representing chemical interactions have been grouped into three modes of representation used by chemistry instructors, and ultimately by students in understanding the discipline. The first of these three modes of representation is the symbolic mode, which uses a standard set of rules for chemical nomenclature set out by the IUPAC. The second mode of representation is that of microscopic, which depicts chemical compounds as discrete units made up of atoms and molecules, with a particular ratio of atoms to a molecule or formula unit. The third mode of representation is macroscopic, what can be seen, experienced, or measured directly, like ice melting or a color change during a chemical reaction. Recent evidence suggests that chemistry instructors can assist their students in making the connections between the modes of representation by incorporating all three modes into their teaching and discussions, and overtly connecting the modes during instruction. In this research, chemistry teachers at the community college level were observed over the course of an entire semester, to evaluate their instructional use of mode of representation. The students of these teachers were tested prior to and after a semester's worth of instruction, and changes in the basic chemistry conceptual knowledge of these students were compared. Additionally, a subset of the overall population that was pre- and post-tested was interviewed at length using demonstrations of chemical phenomenon that students were asked to translate using all three modes of representation. Analysis of the instruction of three community college teachers shows there were significant differences among these teachers in their instructional use of mode of representation. Additionally, the students of these three teachers had differential and statistically significant achievement over the course of the semester. This research supports results of other similar studies, as well as providing some unexpected results from the students involved.
ContributorsWood, Lorelei (Author) / Baker, Dale (Thesis advisor) / Ganesh, Tirupalavanam G. (Committee member) / Colleen, Megowan (Committee member) / Sujatha, Krishnaswamy (Committee member) / Arizona State University (Publisher)
Created2013
150600-Thumbnail Image.png
Description
Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions

Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.
ContributorsKelly, Jacquelyn (Author) / Baker, Dale (Thesis advisor) / Ganesh, Tirupalavanam G. (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
150744-Thumbnail Image.png
Description
Females and underrepresented ethnic minorities earn a small percentage of engineering and computer science bachelor's degrees awarded in the United States, earn an even smaller proportion of master's and doctoral degrees, and are underrepresented in the engineering workforce (Engineering Workforce Commission, [2006], as cited in National Science Foundation, 2012; United

Females and underrepresented ethnic minorities earn a small percentage of engineering and computer science bachelor's degrees awarded in the United States, earn an even smaller proportion of master's and doctoral degrees, and are underrepresented in the engineering workforce (Engineering Workforce Commission, [2006], as cited in National Science Foundation, 2012; United States Department of Education, [2006], as cited in National Science Foundation, 2009a; United States Department of Education, [2006], as cited in National Science Foundation, 2009b). Considerable research has examined the perceptions, culture, curriculum, and pedagogy in engineering that inhibits the achievement of women and underrepresented ethnic minorities. This action research study used a qualitative approach to examine the characteristics and experiences of Latina students who pursued a bachelor's degree in the Ira A. Fulton Schools of Engineering at Arizona State University (ASU) as part of the 2008 first-time full-time freshman cohort. The researcher conducted two semi-structured individual interviews with seven undergraduate Latina students who successfully persisted to their fourth (senior) year in engineering. The researcher aimed to understand what characteristics made these students successful and how their experiences affected their persistence in an engineering major. The data collected showed that the Latina participants were motivated to persist in their engineering degree program due to their parents' expectations for success and high academic achievement; their desire to overcome the discrimination, stereotyping, and naysayers that they encountered; and their aspiration to become a role model for their family and other students interested in pursuing engineering. From the data collected, the researcher provided suggestions to implement and adapt educational activities and support systems within the Ira A. Fulton Schools of Engineering to improve the retention and graduation rates of Latinas in engineering at ASU.
ContributorsRobinson, Carrie (Author) / Mcintyre, Lisa (Thesis advisor) / Hesse, Marian (Committee member) / Ganesh, Tirupalavanam G. (Committee member) / Arizona State University (Publisher)
Created2012
150780-Thumbnail Image.png
Description
Collaborative learning is a common teaching strategy in classrooms across age groups and content areas. It is important to measure and understand the cognitive process involved during collaboration to improve teaching methods involving interactive activities. This research attempted to answer the question: why do students learn more in collaborative settings?

Collaborative learning is a common teaching strategy in classrooms across age groups and content areas. It is important to measure and understand the cognitive process involved during collaboration to improve teaching methods involving interactive activities. This research attempted to answer the question: why do students learn more in collaborative settings? Using three measurement tools, 142 participants from seven different biology courses at a community college and at a university were tested before and after collaborating about the biological process of natural selection. Three factors were analyzed to measure their effect on learning at the individual level and the group level. The three factors were: difference in prior knowledge, sex and religious beliefs. Gender and religious beliefs both had a significant effect on post-test scores.
ContributorsTouchman, Stephanie (Author) / Baker, Dale (Thesis advisor) / Rosenberg, Michael (Committee member) / Ganesh, Tirupalavanam G. (Committee member) / Arizona State University (Publisher)
Created2012
150546-Thumbnail Image.png
Description
Although open access publishing has been available since 1998, we know little regarding scholars' perceptions and practices toward publishing in open access outlets, especially in the social science community. Open access publishing has been slow to penetrate the field of education, yet the potential impact of open access could make

Although open access publishing has been available since 1998, we know little regarding scholars' perceptions and practices toward publishing in open access outlets, especially in the social science community. Open access publishing has been slow to penetrate the field of education, yet the potential impact of open access could make this publishing method an important innovation for understanding how to support the publishing needs of education scholars. To discover these perceptions and practices that education scholars have toward open access publishing, a 51-item web-based survey was provided to scholars with known investment in open access publishing. Participants had either (1) a publication in one of 34 United States education-based open access journals or (2) a manuscript submitted for peer review in one of those 34 journals. The survey contained subscales focusing on contemporary open access themes--issues identified through a comprehensive analysis of the major outlets for scholarly news in education. Through open and axial coding, several themes were extracted. They included rights and ease of access, ease of publishing, costs, support from colleagues and administrators, and perceived quality of open access outlets. The survey showed moderate to high reliability using Cronbach's alpha. Correlation and MANOVA testing showed significant results in scholars' teaching status and peer review status of manuscripts. Additional findings indicated that non-tenured education scholars responded more strongly than tenured scholars to issues related to rights and ease of access, promotion, and quality. Scholars with manuscripts currently in peer review felt strongly about themes of rights and ease of access, cost, and promotion. The results imply the following: (1) If scholars want their research read by a wider audience, they should publish in open access journals. (2) Pro-open access policies and procedures could gain more support by ensuring open access is promoted to non-tenured scholars seeking to publish. (3) More research, forums, discussions, and education about open access need to occur in greater abundance to continue to ameliorate scholars' views about the benefits of open access publishing. (4) Institutions and departments can offer their unconditional support for open access publishing as a method of meeting promotion/tenure requirements.
ContributorsEllingford, Lori Michelle (Author) / Brem, Sarah K. (Thesis advisor) / Husman, Jenefer (Committee member) / Ganesh, Tirupalavanam G. (Committee member) / Duggan, Mary Anne (Committee member) / Arizona State University (Publisher)
Created2012