Matching Items (47)
150029-Thumbnail Image.png
Description
A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts

A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts the capacitance variations into voltage signal, achieves a noise of 32 dB SPL (sound pressure level) and an SNR of 72 dB, additionally it also performs single to differential conversion allowing for fully differential analog signal chain. The analog front-end consists of 40dB VGA and a power scalable continuous time sigma delta ADC, with 68dB SNR dissipating 67u¬W from a 1.2V supply. The ADC implements a self calibrating feedback DAC, for calibrating the 2nd order non-linearity. The VGA and power scalable ADC is fabricated on 0.25 um CMOS TSMC process. The dual channels of the DHA are precisely matched and achieve about 0.5dB gain mismatch, resulting in greater than 5dB directivity index. This will enable a highly integrated and low power DHA
ContributorsNaqvi, Syed Roomi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Chae, Junseok (Committee member) / Barnby, Hugh (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2011
150036-Thumbnail Image.png
Description
Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond.

Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond. Biosensor technology for use in clinical diagnostics, however, requires translational research that moves bench science and theoretical knowledge toward marketable products. Despite the high volume of academic research to date, only a handful of biomedical devices have become viable commercial applications. Academic research must increase its focus on practical uses for biosensors. This dissertation is an example of this increased focus, and discusses work to advance microfluidic-based protein biosensor technologies for practical use in clinical diagnostics. Four areas of work are discussed: The first involved work to develop reusable/reconfigurable biosensors that are useful in applications like biochemical science and analytical chemistry that require detailed sensor calibration. This work resulted in a prototype sensor and an in-situ electrochemical surface regeneration technique that can be used to produce microfluidic-based reusable biosensors. The second area of work looked at non-specific adsorption (NSA) of biomolecules, which is a persistent challenge in conventional microfluidic biosensors. The results of this work produced design methods that reduce the NSA. The third area of work involved a novel microfluidic sensing platform that was designed to detect target biomarkers using competitive protein adsorption. This technique uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. This method enabled us to selectively detect a thyroid cancer biomarker, thyroglobulin, in a controlled-proteins cocktail and a cardiovascular biomarker, fibrinogen, in undiluted human serum. The fourth area of work involved expanding the technique to produce a unique protein identification method; Pattern-recognition. A sample mixture of proteins generates a distinctive composite pattern upon interaction with a sensing platform consisting of multiple surfaces whereby each surface consists of a distinct type of protein pre-adsorbed on the surface. The utility of the "pattern-recognition" sensing mechanism was then verified via recognition of a particular biomarker, C-reactive protein, in the cocktail sample mixture.
ContributorsChoi, Seokheun (Author) / Chae, Junseok (Thesis advisor) / Tao, Nongjian (Committee member) / Yu, Hongyu (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
150048-Thumbnail Image.png
Description
A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene,

A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene, and xylenes (BTEX) via a homemade molecular imprinted polymer, and a specific detection and control circuit. The device is a wireless, portable, battery-powered, and cell-phone operated device. The device has been calibrated and validated in the laboratory and using selected ion flow tube mass spectrometry (SFIT-MS). The capability and robustness are also demonstrated in some field tests. It provides rapid and reliable detection of BTEX in real samples, including challenging high concentrations of interferents, and it is suitable for occupational, environmental health and epidemiological applications.
ContributorsChen, Zheng (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
149825-Thumbnail Image.png
Description
In this thesis, I present a lab-on-a-chip (LOC) that can separate and detect Escherichia Coli (E. coli) in simulated urine samples for Urinary Tract Infection (UTI) diagnosis. The LOC consists of two (concentration and sensing) chambers connected in series and an integrated impedance detector. The two-chamber approach is designed to

In this thesis, I present a lab-on-a-chip (LOC) that can separate and detect Escherichia Coli (E. coli) in simulated urine samples for Urinary Tract Infection (UTI) diagnosis. The LOC consists of two (concentration and sensing) chambers connected in series and an integrated impedance detector. The two-chamber approach is designed to reduce the non-specific absorption of proteins, e.g. albumin, that potentially co-exist with E. coli in urine. I directly separate E. coli K-12 from a urine cocktail in a concentration chamber containing micro-sized magnetic beads (5 µm in diameter) conjugated with anti-E. coli antibodies. The immobilized E. coli are transferred to a sensing chamber for the impedance measurement. The measurement at the concentration chamber suffers from non-specific absorption of albumin on the gold electrode, which may lead to a false positive response. By contrast, the measured impedance at the sensing chamber shows ~60 kÙ impedance change between 6.4x104 and 6.4x105 CFU/mL, covering the threshold of UTI (105 CFU/mL). The sensitivity of the LOC for detecting E. coli is characterized to be at least 3.4x104 CFU/mL. I also characterized the LOC for different age groups and white blood cell spiked samples. These preliminary data show promising potential for application in portable LOC devices for UTI detection.
ContributorsKim, Sangpyeong (Author) / Chae, Junseok (Thesis advisor) / Phillips, Stephen M. (Committee member) / Blain Christen, Jennifer M. (Committee member) / Arizona State University (Publisher)
Created2011
150211-Thumbnail Image.png
Description
The first part describes Metal Semiconductor Field Effect Transistor (MESFET) based fundamental analog building blocks designed and fabricated in a single poly, 3-layer metal digital CMOS technology utilizing fully depletion mode MESFET devices. DC characteristics were measured by varying the power supply from 2.5V to 5.5V. The measured DC transfer

The first part describes Metal Semiconductor Field Effect Transistor (MESFET) based fundamental analog building blocks designed and fabricated in a single poly, 3-layer metal digital CMOS technology utilizing fully depletion mode MESFET devices. DC characteristics were measured by varying the power supply from 2.5V to 5.5V. The measured DC transfer curves of amplifiers show good agreement with the simulated ones with extracted models from the same process. The accuracy of the current mirror showing inverse operation is within ±15% for the current from 0 to 1.5mA with the power supply from 2.5 to 5.5V. The second part presents a low-power image recognition system with a novel MESFET device fabricated on a CMOS substrate. An analog image recognition system with power consumption of 2.4mW/cell and a response time of 6µs is designed, fabricated and characterized. The experimental results verified the accuracy of the extracted SPICE model of SOS MESFETs. The response times of 4µs and 6µs for one by four and one by eight arrays, respectively, are achieved with the line recognition. Each core cell for both arrays consumes only 2.4mW. The last part presents a CMOS low-power transceiver in MICS band is presented. The LNA core has an integrated mixer in a folded configuration. The baseband strip consists of a pseudo differential MOS-C band-pass filter achieving demodulation of 150kHz-offset BFSK signals. The SRO is used in a wakeup RX for the wake-up signal reception. The all digital frequency-locked loop drives a class AB power amplifier in a transmitter. The sensitivity of -85dBm in the wakeup RX is achieved with the power consumption of 320µW and 400µW at the data rates of 100kb/s and 200kb/s from 1.8V, respectively. The sensitivities of -70dBm and -98dBm in the data-link RX are achieved with NF of 40dB and 11dB at the data rate of 100kb/s while consuming only 600µW and 1.5mW at 1.2V and 1.8V, respectively.
ContributorsKim, Sung (Author) / Bakkaloglu, Bertan (Thesis advisor) / Christen, Jennifer Blain (Committee member) / Cao, Yu (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2011
150217-Thumbnail Image.png
Description
The past two decades have been monumental in the advancement of microchips designed for a diverse range of medical applications and bio-analysis. Owing to the remarkable progress in micro-fabrication technology, complex chemical and electro-mechanical features can now be integrated into chip-scale devices for use in biosensing and physiological measurements. Some

The past two decades have been monumental in the advancement of microchips designed for a diverse range of medical applications and bio-analysis. Owing to the remarkable progress in micro-fabrication technology, complex chemical and electro-mechanical features can now be integrated into chip-scale devices for use in biosensing and physiological measurements. Some of these devices have made enormous contributions in the study of complex biochemical processes occurring at the molecular and cellular levels while others overcame the challenges of replicating various functions of human organs as implant systems. This thesis presents test data and analysis of two such systems. First, an ISFET based pH sensor is characterized for its performance in a continuous pH monitoring application. Many of the basic properties of ISFETs including I-V characteristics, pH sensitivity and more importantly, its long term drift behavior have been investigated. A new theory based on frequent switching of electric field across the gate oxide to decrease the rate of current drift has been successfully implemented with the help of an automated data acquisition and switching system. The system was further tested for a range of duty cycles in order to accurately determine the minimum length of time required to fully reset the drift. Second, a microfluidic based vestibular implant system was tested for its underlying characteristics as a light sensor. A computer controlled tilt platform was then implemented to further test its sensitivity to inclinations and thus it‟s more important role as a tilt sensor. The sensor operates through means of optoelectronics and relies on the signals generated from photodiode arrays as a result of light being incident on them. ISFET results show a significant drop in the overall drift and good linear characteristics. The drift was seen to reset at less than an hour. The photodiodes show ideal I-V comparison between photoconductive and photovoltaic modes of operation with maximum responsivity at 400nm and a shunt resistance of 394 MΩ. Additionally, post-processing of the tilt sensor to incorporate the sensing fluids is outlined. Based on several test and fabrication results, a possible method of sealing the open cavity of the chip using a UV curable epoxy has been discussed.
ContributorsMamun, Samiha (Author) / Christen, Jennifer Blain (Thesis advisor) / Goryll, Michael (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2011
150219-Thumbnail Image.png
Description
Micro-electro-mechanical systems (MEMS) film bulk acoustic resonator (FBAR) demonstrates label-free biosensing capabilities and is considered to be a promising alternative of quartz crystal microbalance (QCM). FBARs achieve great success in vacuum, or in the air, but find limited applications in liquid media because squeeze damping significantly degrades quality factor (Q)

Micro-electro-mechanical systems (MEMS) film bulk acoustic resonator (FBAR) demonstrates label-free biosensing capabilities and is considered to be a promising alternative of quartz crystal microbalance (QCM). FBARs achieve great success in vacuum, or in the air, but find limited applications in liquid media because squeeze damping significantly degrades quality factor (Q) and results in poor frequency resolution. A transmission-line model shows that by confining the liquid in a thickness comparable to the acoustic wavelength of the resonator, Q can be considerably improved. The devices exhibit damped oscillatory patterns of Q as the liquid thickness varies. Q assumes its maxima and minima when the channel thickness is an odd and even multiple of the quarter-wavelength of the resonance, respectively. Microfluidic channels are integrated with longitudinal-mode FBARs (L-FBARs) to realize this design; a tenfold improvement of Q over fully-immersed devices is experimentally verified. Microfluidic integrated FBAR sensors have been demonstrated for detecting protein binding in liquid and monitoring the Vroman effect (the competitive protein adsorption behavior), showing their potential as a promising bio-analytical tool. A contour-mode FBAR (C-FBAR) is developed to further improve Q and to alleviate the need for complex integration of microfluidic channels. The C-FBAR consists of a suspended piezoelectric ring made of aluminum nitride and is excited in the fundamental radial-extensional mode. By replacing the squeeze damping with shear damping, high Qs (189 in water and 77 in human whole blood) are obtained in semi-infinite depth liquids. The C-FBAR sensors are characterized by aptamer - thrombin binding pairs and aqueous glycerine solutions for mass and viscosity sensing schemes, respectively. The C-FBAR sensor demonstrates accurate viscosity measurement from 1 to 10 centipoise, and can be deployed to monitor in-vitro blood coagulation processes in real time. Results show that its resonant frequency decreases as the viscosity of the blood increases during the fibrin generation process after the coagulation cascade. The coagulation time and the start/end of the fibrin generation are quantitatively determined, showing the C-FBAR can be a low-cost, portable yet reliable tool for hemostasis diagnostics.
ContributorsXu, Wencheng (Author) / Chae, Junseok (Thesis advisor) / Phillips, Stephen (Committee member) / Cao, Yu (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150204-Thumbnail Image.png
Description
Programmable metallization cell (PMC) technology is based on an electrochemical phenomenon in which a metallic electrodeposit can be grown or dissolved between two electrodes depending on the voltage applied between them. Devices based on this phenomenon exhibit a unique, self-healing property, as a broken metallic structure can be healed by

Programmable metallization cell (PMC) technology is based on an electrochemical phenomenon in which a metallic electrodeposit can be grown or dissolved between two electrodes depending on the voltage applied between them. Devices based on this phenomenon exhibit a unique, self-healing property, as a broken metallic structure can be healed by applying an appropriate voltage between the two broken ends. This work explores methods of fabricating interconnects and switches based on PMC technology on flexible substrates. The objective was the evaluation of the feasibility of using this technology in flexible electronics applications in which reliability is a primary concern. The re-healable property of the interconnect is characterized for the silver doped germanium selenide (Ag-Ge-Se) solid electrolyte system. This property was evaluated by measuring the resistances of the healed interconnect structures and comparing these to the resistances of the unbroken structures. The reliability of the interconnects in both unbroken and healed states is studied by investigating the resistances of the structures to DC voltages, AC voltages and different temperatures as a function of time. This work also explores replacing silver with copper for these interconnects to enhance their reliability. A model for PMC-based switches on flexible substrates is proposed and compared to the observed device behavior with the objective of developing a formal design methodology for these devices. The switches were subjected to voltage sweeps and their resistance was investigated as a function of sweep voltage. The resistance of the switches as a function of voltage pulse magnitude when placed in series with a resistance was also investigated. A model was then developed to explain the behavior of these devices. All observations were based on statistical measurements to account for random errors. The results of this work demonstrate that solid electrolyte based interconnects display self-healing capability, which depends on the applied healing voltage and the current limit. However, they fail at lower current densities than metal interconnects due to an ion-drift induced failure mechanism. The results on the PMC based switches demonstrate that a model comprising a Schottky diode in parallel with a variable resistor predicts the behavior of the device.
ContributorsBaliga, Sunil Ravindranath (Author) / Kozicki, Michael N (Thesis advisor) / Schroder, Dieter K. (Committee member) / Chae, Junseok (Committee member) / Alford, Terry L. (Committee member) / Arizona State University (Publisher)
Created2011
Description
Obtaining local electrochemical (EC) information is extremely important for understanding basic surface reactions, and for many applications. Scanning electrochemical microscopy (SECM) can obtain local EC information by scanning a microelectrode across the surface. Although powerful, SECM is slow, the scanning microelectrode may perturb reaction and the measured signal decreases with

Obtaining local electrochemical (EC) information is extremely important for understanding basic surface reactions, and for many applications. Scanning electrochemical microscopy (SECM) can obtain local EC information by scanning a microelectrode across the surface. Although powerful, SECM is slow, the scanning microelectrode may perturb reaction and the measured signal decreases with the size of microelectrode. This thesis demonstrates a new imaging technique based on a principle that is completely different from the conventional EC detection technologies. The technique, referred to as plasmonic-based electrochemical imaging (PECI), images local EC current (both faradaic and non-faradaic) without using a scanning microelectrode. Because PECI response is an optical signal originated from surface plasmon resonance (SPR), PECI is fast and non-invasive and its signal is proportional to incident light intensity, thus does not decrease with the area of interest. A complete theory is developed in this thesis work to describe the relationship between EC current and PECI signal. EC current imaging at various fixed potentials and local cyclic voltammetry methods are developed and demonstrated with real samples. Fast imaging rate (up to 100,000 frames per second) with 0.2×3µm spatial resolution and 0.3 pA detection limit have been achieved. Several PECI applications have been developed to demonstrate the unique strengths of the new imaging technology. For example, trace particles in fingerprint is detected by PECI, a capability that cannot be achieved with the conventional EC technologies. Another example is PECI imaging of EC reaction and interfacial impedance of graphene of different thicknesses. In addition, local square wave voltammetry capability is demonstrated and applied to study local catalytic current of platinum nanoparticle microarray. This thesis also describes a related but different research project that develops a new method to measure surface charge densities of SPR sensor chips, and micro- and nano-particles. A third project of this thesis is to develop a method to expand the conventional SPR detection and imaging technology by including a waveguide mode. This innovation creates a sensitive detection of bulk index of refraction, which overcomes the limitation that the conventional SPR can probe only changes near the sensor surface within ~200 nm.
ContributorsShan, Xiaonan (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Christen, Jennifer Blain (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2011
152151-Thumbnail Image.png
Description
Fluxgate sensors are magnetic field sensors that can measure DC and low frequency AC magnetic fields. They can measure much lower magnetic fields than other magnetic sensors like Hall effect sensors, magnetoresistive sensors etc. They also have high linearity, high sensitivity and low noise. The major application of fluxgate sensors

Fluxgate sensors are magnetic field sensors that can measure DC and low frequency AC magnetic fields. They can measure much lower magnetic fields than other magnetic sensors like Hall effect sensors, magnetoresistive sensors etc. They also have high linearity, high sensitivity and low noise. The major application of fluxgate sensors is in magnetometers for the measurement of earth's magnetic field. Magnetometers are used in navigation systems and electronic compasses. Fluxgate sensors can also be used to measure high DC currents. Integrated micro-fluxgate sensors have been developed in recent years. These sensors have much lower power consumption and area compared to their PCB counterparts. The output voltage of micro-fluxgate sensors is very low which makes the analog front end more complex and results in an increase in power consumption of the system. In this thesis a new analog front-end circuit for micro-fluxgate sensors is developed. This analog front-end circuit uses charge pump based excitation circuit and phase delay based read-out chain. With these two features the power consumption of analog front-end is reduced. The output is digital and it is immune to amplitude noise at the output of the sensor. Digital output is produced without using an ADC. A SPICE model of micro-fluxgate sensor is used to verify the operation of the analog front-end and the simulation results show very good linearity.
ContributorsPappu, Karthik (Author) / Bakkaloglu, Bertan (Thesis advisor) / Christen, Jennifer Blain (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2013