Matching Items (20)
150539-Thumbnail Image.png
Description
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.
ContributorsWeber, Eric David (Author) / Thompson, Patrick (Thesis advisor) / Middleton, James (Committee member) / Carlson, Marilyn (Committee member) / Saldanha, Luis (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2012
137221-Thumbnail Image.png
Description
This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University

This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University initially identified mental actions that we conjectured were needed for constructing meaningful linear formulas. This guided the development of tasks for the sequence of clinical interviews with one high-performing precalculus student. Analysis of the interview data revealed that in instances when the subject engaged in meaning making that led to him imagining and identifying the relevant quantities and how they change together, he was able to give accurate definitions of variables and was usually able to define a formula to relate the two quantities of interest. However, we found that the student sometimes had difficulty imagining how the two quantities of interest were changing together. At other times he exhibited a weak understanding of the operation of subtraction and the idea of constant rate of change. He did not appear to conceptualize subtraction as a quantitative comparison. His inability to conceptualize a constant rate of change as a proportional relationship between the changes in two quantities also presented an obstacle in his developing a meaningful formula that relied on this understanding. The results further stress the need to develop a student's ability to engage in mental operations that involve covarying quantities and a more robust understanding of constant rate of change since these abilities and understanding are critical for student success in future courses in mathematics.
ContributorsKlinger, Tana Paige (Author) / Carlson, Marilyn (Thesis director) / Thompson, Pat (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
148295-Thumbnail Image.png
Description

A project about developing software for learning turned into a project for learning about software development. The submission here only includes the journal. However, the journal has a link to the public GitHub repository containing the source code for the thesis. The source code implements a program to facilitate self-study

A project about developing software for learning turned into a project for learning about software development. The submission here only includes the journal. However, the journal has a link to the public GitHub repository containing the source code for the thesis. The source code implements a program to facilitate self-study by allowing the user to create quizzes. The journal contains my experience working on the project (both successes and failures).

ContributorsRoper, Branden Gerald (Author) / Miller, Phillip (Thesis director) / Zazkis, Dov (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131828-Thumbnail Image.png
Description
This study sought to replicate previous work in student conceptions of formal proofs based on informal arguments, originally explored by Zazkis et al. (2016). Additional tasks were added to the experiment to produce new data that could further verify the analysis of Zazkis et al. (2016) as well as provide

This study sought to replicate previous work in student conceptions of formal proofs based on informal arguments, originally explored by Zazkis et al. (2016). Additional tasks were added to the experiment to produce new data that could further verify the analysis of Zazkis et al. (2016) as well as provide more insight into how students comprehend proofs, what types of mistakes occur, and why. Results from one-on-one interviews confirmed that some students were not able to make accurate informal to formal comparisons because they were not considering multiple facets of the problem. Additionally, patterns in the students’ analysis introduced more questions concerning the motivations behind what students choose to think about when they read and dissect proofs.
ContributorsPeng, Tina (Author) / Zazkis, Dov (Thesis director) / Roh, Kyeong Hah (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133862-Thumbnail Image.png
Description
Previous research has examined difficulties that students have with understanding and productively working with function notation. Function notation is very prevalent throughout mathematics education, helping students to better understand and more easily work with functions. The goal of my research was to investigate students' current ways of thinking about function

Previous research has examined difficulties that students have with understanding and productively working with function notation. Function notation is very prevalent throughout mathematics education, helping students to better understand and more easily work with functions. The goal of my research was to investigate students' current ways of thinking about function notation to better assist teachers in helping their students develop deeper and more productive understandings. In this study, I conducted two separate interviews with two undergraduate students to explore their meanings for function notation. I developed and adapted tasks aimed at investigating different aspects and uses of function notation. In each interview, I asked the participants to attempt each of the tasks, explaining their thoughts as they worked. While they were working, I occasionally asked clarifying questions to better understand their thought processes. For the second interviews, I added tasks based on difficulties I found in the first interviews. I video recorded each interview for later analysis. Based on the data found in the interviews, I will discuss the seven prevalent ways of thinking that I found, how they hindered or facilitated working with function notation productively, and suggestions for instruction to better help students understand the concept.
ContributorsMckee, Natalie Christina (Author) / Thompson, Patrick (Thesis director) / Zazkis, Dov (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
157668-Thumbnail Image.png
Description
This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct

This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct of frame of reference. The first paper is a theory paper that introduces the mental actions involved in reasoning with frames of reference. The concept of frames of reference, though commonly used in mathematics and physics, is not described cognitively in any literature. The paper offers a theoretical model of mental actions involved in conceptualizing a frame of reference. Additionally, it posits mental actions that are necessary for a student to reason with multiple frames of reference. It also extends the theory of quantitative reasoning with the construct of a ‘framed quantity’. The second paper investigates how two introductory calculus students who participated in teaching experiments reasoned about changes (variations). The data was analyzed to see to what extent each student conceptualized the variations within a conceptualized frame of reference as described in the first paper. The study found that the extent to which each student conceptualized, coordinated, and combined reference frames significantly affected his ability to reason productively about variations and to make sense of his own answers. The paper ends by analyzing 123 calculus students’ written responses to one of the tasks to build hypotheses about how calculus students reason about variations within frames of reference. The third paper reports how U.S. and Korean secondary mathematics teachers reason with frame of reference on open-response items. An assessment with five frame of reference tasks was given to 539 teachers in the US and Korea, and the responses were coded with rubrics intended to categorize responses by the extent to which they demonstrated conceptualized and coordinated frames of reference. The results show that the theory in the first study is useful in analyzing teachers’ reasoning with frames of reference, and that the items and rubrics function as useful tools in investigating teachers’ meanings for quantities within a frame of reference.
ContributorsJoshua, Surani Ashanthi (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn (Committee member) / Roh, Kyeong Hah (Committee member) / Middleton, James (Committee member) / Culbertson, Robert (Committee member) / Arizona State University (Publisher)
Created2019
189214-Thumbnail Image.png
Description
This study investigated two undergraduate mathematics students’ meanings for derivatives of univariable and multivariable functions when creating linear approximations. Both participants completed multivariable calculus at least two semesters prior to participating in a sequence of four to five exploratory teaching interviews. One purpose of the interviews was to understand the

This study investigated two undergraduate mathematics students’ meanings for derivatives of univariable and multivariable functions when creating linear approximations. Both participants completed multivariable calculus at least two semesters prior to participating in a sequence of four to five exploratory teaching interviews. One purpose of the interviews was to understand the students’ meaning of the idea of rate of change and its role in their understanding ideas of derivative, partial derivative, and directional derivative. A second purpose was to understand and advance the ways in which each student used the idea of rate of change to make linear approximations. My analysis of the data revealed (i) how a student’s understanding of constant rate of change impacted their conception of derivatives, partial derivatives, and directional derivatives, and (ii) how each student used these ideas to make linear approximations. My results revealed that conceptualizing a rate of change as the ratio of two quantities’ values as they vary together was critical for their conceptualizing partial and directional derivatives quantitatively as directional rates of change, and in particular, how they visualized these ideas graphically and constructed symbols to represent the quantities and the relationships between their values. Further, my results revealed the importance of distinguishing between conceptualizing an instantaneous rate of change assuming a constant rate of change over any amount of change in the independent quantity(s) and using this rate of change to generate an approximate amount of change in the value of the dependent quantity. Alonzo initially conceptualized rate of change and derivative as the slantiness of a line that intersected a function’s curve. John also referred to the derivative at a point as the slope of the line tangent to the curve at that point, but he appeared to conceptualize the derivative as a ratio of the changes in two quantities values and imagined (represented graphically) two changes while discussing how to make this ratio more precise and use its value to make linear projections of future function values and amounts of accumulation. John also conceptualized the derivative as the best local, linear approximation for a function.
ContributorsBettersworth, Zachary S (Author) / Carlson, Marilyn (Thesis advisor) / Harel, Guershon (Committee member) / Roh, Kyeong Hah (Committee member) / Thompson, Patrick W. (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2023
171831-Thumbnail Image.png
Description
This dissertation reports on three studies about students’ conceptions and learning of the idea of instantaneous rate of change. The first study investigated 25 students’ conceptions of the idea of instantaneous rate of change. The second study proposes a hypothetical learning trajectory, based on the literature and results from the

This dissertation reports on three studies about students’ conceptions and learning of the idea of instantaneous rate of change. The first study investigated 25 students’ conceptions of the idea of instantaneous rate of change. The second study proposes a hypothetical learning trajectory, based on the literature and results from the first study, for learning the idea of instantaneous rate of change. The third study investigated two students’ thinking and learning in the context of a sequence of five exploratory teaching interviews. The first paper reports on the results of conducting clinical interviews with 25 students. The results revealed the diverse conceptions that Calculus students have about the value of a derivative at a given input value. The results also suggest that students’ interpretation of the value of a rate of change is related to their use of covariational reasoning when considering how two quantities’ values vary together. The second paper presents a conceptual analysis on the ways of thinking needed to develop a productive understanding of instantaneous rate of change. This conceptual analysis includes an ordered list of understandings and reasoning abilities that I hypothesize to be essential for understanding the idea of instantaneous rate of change. This paper also includes a sequence of tasks and questions I designed to support students in developing the ways of thinking and meanings described in my conceptual analysis. The third paper reports on the results of five exploratory teaching interviews that leveraged my hypothetical learning trajectory from the second paper. The results of this teaching experiment indicate that developing a coherent understanding of rate of change using quantitative reasoning can foster advances in students’ understanding of instantaneous rate of change as a constant rate of change over an arbitrarily small input interval of a function’s domain.
ContributorsYu, Franklin (Author) / Carlson, Marilyn (Thesis advisor) / Zandieh, Michelle (Committee member) / Thompson, Patrick (Committee member) / Roh, Kyeong Hah (Committee member) / Soto, Roberto (Committee member) / Arizona State University (Publisher)
Created2022
161800-Thumbnail Image.png
Description
This dissertation is on the topic of sameness of representation of mathematical entities from a mathematics education perspective. In mathematics, people frequently work with different representations of the same thing. This is especially evident when considering the prevalence of the equals sign (=). I am adopting the three-paper dissertation model.

This dissertation is on the topic of sameness of representation of mathematical entities from a mathematics education perspective. In mathematics, people frequently work with different representations of the same thing. This is especially evident when considering the prevalence of the equals sign (=). I am adopting the three-paper dissertation model. Each paper reports on a study that investigates understandings of the identity relation. The first study directly addresses function identity: how students conceptualize, work with, and assess sameness of representation of function. It uses both qualitative and quantitative methods to examine how students understand function sameness in calculus contexts. The second study is on the topic of implicit differentiation and student understanding of the legitimacy of it as a procedure. This relates to sameness insofar as differentiating an equation is a valid inference when the equation expresses function identity. The third study directly addresses usage of the equals sign (“=”). In particular, I focus on the notion of symmetry; equality is a symmetric relation (truth-functionally), and mathematicians understand it as such. However, results of my study show that usage is not symmetric. This is small qualitative study and incorporates ideas from the field of linguistics.
ContributorsMirin, Alison (Author) / Zazkis, Dov (Thesis advisor) / Dawkins, Paul C. (Committee member) / Thompson, Patrick W. (Committee member) / Milner, Fabio (Committee member) / Kawski, Matthias (Committee member) / Arizona State University (Publisher)
Created2021
189254-Thumbnail Image.png
Description
Authors of calculus texts often include graphs in the text with the intent that the graph depicts relationships described in theorems and formulas. Similarly, graphs are often utilized in classroom lectures and discussions for the same purpose. The author or instructor includes function graphs to represent quantitative relationships and how

Authors of calculus texts often include graphs in the text with the intent that the graph depicts relationships described in theorems and formulas. Similarly, graphs are often utilized in classroom lectures and discussions for the same purpose. The author or instructor includes function graphs to represent quantitative relationships and how a pair of quantities vary. Previous research has shown that different students interpret calculus statements differently depending on their meanings of points in the coordinate plane. As a result, students' widely differing interpretations of graphs presented to them. Researchers studying how students understand graphs of continuous functions and coordinate planes have developed many constructs to explain potential aspects of students' thinking about coordinate points, coordinate planes, variation, covariation, and continuous functions. No current research investigates how the different ways of thinking about graphs correlate. In other words, are there some ways of thinking that tend to either occur together or not occur together? In this research, I investigated student's system of meanings to describe how the different ways of understanding coordinate planes, coordinate points, and graphs of functions in the coordinate planes are related in students’ thinking. I determine a relationship between students' understanding of number lines or coordinate planes containing an infinite collection of numbers and their ability to identify a graph representing a dynamic situation. Additionally, I determined a relationship between students reasoning with values (instead of shapes) and their ability to create a graph to represent a dynamic situation.
ContributorsVillatoro, Barbara (Author) / Thompson, Patrick (Thesis advisor) / Carlson, Marilyn (Committee member) / Moore, Kevin (Committee member) / Roh, Kyeong Hah (Committee member) / Draney, Karen (Committee member) / Arizona State University (Publisher)
Created2023