Matching Items (1,677)
Filtering by

Clear all filters

Description
Quantum entanglement, a phenomenon first introduced in the realm of quantum mechanics by the famous Einstein-Podolsky-Rosen (EPR) paradox, has intrigued physicists and philosophers alike for nearly a century. Its implications for the nature of reality, particularly its apparent violation of local realism, have sparked intense debate and spurred numerous experimental

Quantum entanglement, a phenomenon first introduced in the realm of quantum mechanics by the famous Einstein-Podolsky-Rosen (EPR) paradox, has intrigued physicists and philosophers alike for nearly a century. Its implications for the nature of reality, particularly its apparent violation of local realism, have sparked intense debate and spurred numerous experimental investigations. This thesis presents a comprehensive examination of quantum entanglement with a focus on probing its non-local aspects. Central to this thesis is the development of a detailed project document outlining a proposed experimental approach to investigate the non-local nature of quantum entanglement. Drawing upon recent advancements in quantum technology, including the manipulation and control of entangled particles, the proposed experiment aims to rigorously test the predictions of quantum mechanics against the framework of local realism. The experimental setup involves the generation of entangled particle pairs, such as photons or ions, followed by the precise manipulation of their quantum states. By implementing a series of carefully designed measurements on spatially separated entangled particles, the experiment seeks to discern correlations that defy explanation within a local realistic framework.
ContributorsWasserbeck, Noah (Author) / Lukens, Joseph (Thesis director) / Arenz, Christian (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-05
Description
Machine learning has been increasingly integrated into several new areas, namely those related to vision processing and language learning models. These implementations of these processes in new products have demanded increasingly more expensive memory usage and computational requirements. Microcontrollers can lower this increasing cost. However, implementation of such a system

Machine learning has been increasingly integrated into several new areas, namely those related to vision processing and language learning models. These implementations of these processes in new products have demanded increasingly more expensive memory usage and computational requirements. Microcontrollers can lower this increasing cost. However, implementation of such a system on a microcontroller is difficult and has to be culled appropriately in order to find the right balance between optimization of the system and allocation of resources present in the system. A proof of concept that these algorithms can be implemented on such as system will be attempted in order to find points of contention of the construction of such a system on such limited hardware, as well as the steps taken to enable the usage of machine learning onto a limited system such as the general purpose MSP430 from Texas Instruments.
ContributorsMalcolm, Ian (Author) / Allee, David (Thesis director) / Spanias, Andreas (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2024-05
Description
Power generation through heat to electrical energy conversion for space applications faces distinct challenges not encountered in terrestrial settings, where Rankine and Brayton cycles have traditionally been predominant. The unique environment of space necessitates the adoption of either static converters, leveraging solid-state physics, or closed-cycle dynamic converters. While thermoelectric generators

Power generation through heat to electrical energy conversion for space applications faces distinct challenges not encountered in terrestrial settings, where Rankine and Brayton cycles have traditionally been predominant. The unique environment of space necessitates the adoption of either static converters, leveraging solid-state physics, or closed-cycle dynamic converters. While thermoelectric generators have historically been the primary choice for heat-to-electrical energy conversion in space applications, their relatively low efficiencies and limited scope for enhancement pose significant challenges as the power demands of space missions increase. This necessitates the exploration of alternative power generation methodologies to meet the evolving requirements. This thesis provides a comprehensive analysis of various power conversion technologies for space applications, focusing on the comparative study of static and dynamic converters, with a particular emphasis on Stirling converters. Other power systems discussed include thermoelectric, thermophotovoltaic, thermionic, and Brayton converters. Through comparative analysis, the research identifies the most promising converters for future space applications.
ContributorsWilderspin, Zoe (Author) / Lee, Taewoo (Thesis director) / Holbert, Keith (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2024-05
Description
The Mary-El tarot deck is famous in the tarot community for its intense spiritual power and esoteric imagery. By analyzing its major arcana and investigating the symbology featured therein, for purposes of making the deck accessible to others, I discover a rich world of flowing energies and underlying transcendence. I've

The Mary-El tarot deck is famous in the tarot community for its intense spiritual power and esoteric imagery. By analyzing its major arcana and investigating the symbology featured therein, for purposes of making the deck accessible to others, I discover a rich world of flowing energies and underlying transcendence. I've used writing to document my journey and discoveries of the internal self. I present these writings as my thesis, and I demonstrate my understanding of the cards through tarot readings.
ContributorsBenson, Caley (Author) / Giner, Oscar (Thesis director) / Zent, Miranda (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2024-05
192256-Thumbnail Image.png
Description
Recent satellite and remote sensing innovations have led to an eruption in the amount and variety of geospatial ice data available to the public, permitting in-depth study of high-definition ice imagery and digital elevation models (DEMs) for the goal of safe maritime navigation and climate monitoring. Few researchers have investigated

Recent satellite and remote sensing innovations have led to an eruption in the amount and variety of geospatial ice data available to the public, permitting in-depth study of high-definition ice imagery and digital elevation models (DEMs) for the goal of safe maritime navigation and climate monitoring. Few researchers have investigated texture in optical imagery as a predictive measure of Arctic sea ice thickness due to its cloud pollution, uniformity, and lack of distinct features that make it incompatible with standard feature descriptors. Thus, this paper implements three suitable ice texture metrics on 1640 Arctic sea ice image patches, namely (1) variance pooling, (2) gray-level co-occurrence matrices (GLCMs), and (3) textons, to assess the feasibly of a texture-based ice thickness regression model. Results indicate that of all texture metrics studied, only one GLCM statistic, namely homogeneity, bore any correlation (0.15) to ice freeboard.
ContributorsWarner, Hailey (Author) / Cochran, Douglas (Thesis director) / Jayasuria, Suren (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Electrical Engineering Program (Contributor)
Created2024-05
190272-Thumbnail Image.png
Description
This paper delves into the carbon footprint generated by AI chips during their training and operational phases. It highlights the often-overlooked environmental impact of training AI models like ChatGPT, emphasizing the significant CO2 emissions and computational demands involved. The paper also explores the paradoxical nature of AI, which, while contributing

This paper delves into the carbon footprint generated by AI chips during their training and operational phases. It highlights the often-overlooked environmental impact of training AI models like ChatGPT, emphasizing the significant CO2 emissions and computational demands involved. The paper also explores the paradoxical nature of AI, which, while contributing to climate change, also holds potential in combating its effects. This dual role of AI sparks ethical debates, particularly concerning strategies to minimize the carbon emissions associated with AI training. Some potential solutions, such as increased transparency among AI-utilizing companies and the adoption of analog-in-memory computing, to address these challenges while also continuing to push the boundaries of AI computing.
ContributorsMulvey, Nicole (Author) / Marinella, Matthew (Thesis director) / Short, Jesse (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-12
Description
This research explores the potential use of microwave energy to detect various substances in water, with a focus on water quality assessment and pathogen detection applications. There are many non-thermal effects of microwaves on microorganisms and their resonant frequencies could be used to identify and possibly destroy harmful pathogens, such

This research explores the potential use of microwave energy to detect various substances in water, with a focus on water quality assessment and pathogen detection applications. There are many non-thermal effects of microwaves on microorganisms and their resonant frequencies could be used to identify and possibly destroy harmful pathogens, such as bacteria and viruses, without heating the water. A wide range of materials, including living organisms like Daphnia and Moina, plants, sand, plastic, and salt, were subjected to microwave measurements to assess their influence on the transmission (S21) measurements. The measurements of the living organisms did not display distinctive resonant frequencies and variations in water volume may be the source of the small measurement differences. Conversely, sand and plastic pellets affected the measurements differently, with their arrangement within the test tube emerging as a significant factor. This study also explores the impact of salinity on measurements, revealing a clear pattern that can be modeled as a series RLC resonator. Although unique resonant frequencies for the tested organisms were not identified, the presented system demonstrates the potential for detecting contaminants based on variations in measurements. Future research may extend this work to include a broader array of organisms and enhance measurement precision.
ContributorsChild, Carson (Author) / Aberle, James (Thesis director) / Blain Christen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-12
148121-Thumbnail Image.png
Description

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is hypothesized to be remnant core material of an early planet, potentially providing key insights to planet formation. Following this initial mission, it is possible there would be scientists and engineers interested in proposing a mission to land an explorer on the surface of Psyche to further document various properties of the asteroid. As a proposal for a second mission, an interdisciplinary engineering and science capstone team at Arizona State University designed and constructed a robotic explorer for the hypothesized surfaces of Psyche, capable of semi-autonomously navigating simulated surfaces to collect scientific data from onboard sensors. A critical component of this explorer is the command and data handling subsystem, and as such, the security of this system, though outside the scope of the capstone project, remains a crucial consideration. This thesis proposes the pairing of Trusted Platform Module (TPM) technology for increased hardware security and the implementation of SELinux (Security Enhanced Linux) for increased software security for Earth-based testing as well as space-ready missions.

ContributorsAnderson, Kelly Joanne (Author) / Bowman, Catherine (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148024-Thumbnail Image.png
Description

Radiation hardening of electronic devices is generally necessary when designing for the space environment. Non-volatile memory technologies are of particular concern when designing for the mitigation of radiation effects. Among other radiation effects, single-event upsets can create bit flips in non-volatile memories, leading to data corruption. In this paper, a

Radiation hardening of electronic devices is generally necessary when designing for the space environment. Non-volatile memory technologies are of particular concern when designing for the mitigation of radiation effects. Among other radiation effects, single-event upsets can create bit flips in non-volatile memories, leading to data corruption. In this paper, a Verilog implementation of a Reed-Solomon error-correcting code is considered for its ability to mitigate the effects of single-event upsets on non-volatile memories. This implementation is compared with the simpler procedure of using triple modular redundancy.

ContributorsSmith, Aidan W (Author) / Kozicki, Michael (Thesis director) / Hodge, Chris (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148033-Thumbnail Image.png
Description

Every communication system has a receiver and a transmitter. Irrespective if it is wired or wireless.The future of wireless communication consists of a massive number of transmitters and receivers. The question arises, can we use computer vision to help wireless communication? To satisfy the high data requirement, a large number

Every communication system has a receiver and a transmitter. Irrespective if it is wired or wireless.The future of wireless communication consists of a massive number of transmitters and receivers. The question arises, can we use computer vision to help wireless communication? To satisfy the high data requirement, a large number of antennas are required. The devices that employ large-antenna arrays have other sensors such as RGB camera, depth camera, or LiDAR sensors.These vision sensors help us overcome the non-trivial wireless communication challenges, such as beam blockage prediction and hand-over prediction.This is further motivated by the recent advances in deep learning and computer vision that can extract high-level semantics from complex visual scenes, and the increasing interest of leveraging machine/deep learning tools in wireless communication problems.[1] <br/><br/>The research was focused solely based on technology like 3D cameras,object detection and object tracking using Computer vision and compression techniques. The main objective of using computer vision was to make Milli-meter Wave communication more robust, and to collect more data for the machine learning algorithms. Pre-build lossless and lossy compression algorithms, such as FFMPEG, were used in the research. An algorithm was developed that could use 3D cameras and machine learning models such as YOLOV3, to track moving objects using servo motors and low powered computers like the raspberry pi or the Jetson Nano. In other words, the receiver could track the highly mobile transmitter in 1 dimension using a 3D camera. Not only that, during the research, the transmitter was loaded on a DJI M600 pro drone, and then machine learning and object tracking was used to track the highly mobile drone. In order to build this machine learning model and object tracker, collecting data like depth, RGB images and position coordinates were the first yet the most important step. GPS coordinates from the DJI M600 were also pulled and were successfully plotted on google earth. This proved to be very useful during data collection using a drone and for the future applications of position estimation for a drone using machine learning. <br/><br/>Initially, images were taken from transmitter camera every second,and those frames were then converted to a text file containing hex-decimal values. Each text file was then transmitted from the transmitter to receiver, and on the receiver side, a python code converted the hex-decimal to JPG. This would give an efect of real time video transmission. However, towards the end of the research, an industry standard, real time video was streamed using pre-built FFMPEG modules, GNU radio and Universal Software Radio Peripheral (USRP). The transmitter camera was a PI-camera. More details will be discussed as we further dive deep into this research report.

ContributorsSeth, Madhav (Author) / Alkhateeb, Ahmed (Thesis director) / Alrabeiah, Muhammad (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05