Matching Items (62)
156245-Thumbnail Image.png
Description
Liquid injection in cross flows has applications in gas-turbine engines, afterburners and some rocket combustion chambers. Integral form of the conservation equations has been used to find a cubic formula for the drop size in liquid sprays in cross flows. Similar to the work on axial liquid sprays, the energy

Liquid injection in cross flows has applications in gas-turbine engines, afterburners and some rocket combustion chambers. Integral form of the conservation equations has been used to find a cubic formula for the drop size in liquid sprays in cross flows. Similar to the work on axial liquid sprays, the energy balance dictates that the initial kinetic energy of the gas and injected liquid be distributed into the final surface tension energy, kinetic energy of the gas and droplets, and viscous dissipation incurred. Kinetic energy of the cross flow is added to the energy balance. Then, only the viscous dissipation term needs to be phenomenologically modelled. The mass and energy balance for the spray flows renders to an expression that relates the drop size to all of the relevant parameters, including the gas- and liquid-phase velocities. The results agree well with experimental data and correlations for the drop size. The solution also provides for drop size-velocity cross-correlation, leading to drop size distributions based on the gas-phase velocity distribution. These aspects can be used in estimating the drop size for practical applications, and also in computational simulations of liquid injection in cross flows, and in other spray geometries in general.
ContributorsPark, Jung Eun (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2018
156755-Thumbnail Image.png
Description
Learning from the anatomy of leaves, a new approach to bio-inspired passive evaporative cooling is presented that utilizes the temperature-responsive properties of PNIPAm hydrogels. Specifically, an experimental evaporation rate from the polymer, PNIPAm, is determined within an environmental chamber, which is programmed to simulate temperature and humidity conditions common in

Learning from the anatomy of leaves, a new approach to bio-inspired passive evaporative cooling is presented that utilizes the temperature-responsive properties of PNIPAm hydrogels. Specifically, an experimental evaporation rate from the polymer, PNIPAm, is determined within an environmental chamber, which is programmed to simulate temperature and humidity conditions common in Phoenix, Arizona in the summer. This evaporation rate is then used to determine the theoretical heat transfer through a layer of PNIPAm that is attached to an exterior wall of a building within a ventilated cavity in Phoenix. The evaporation of water to the air gap from the polymer layer absorbs heat that could otherwise be conducted to the interior space of the building and then dispels it as a vapor away from the building. The results indicate that the addition of the PNIPAm layer removes all heat radiated from the exterior cladding, indicating that it could significantly reduce the demand for air conditioning at the interior side of the wall to which it is attached.
ContributorsBradford, Katherine (Author) / Reddy, T A (Thesis advisor) / Bryan, Harvey (Thesis advisor) / Ramalingam, Muthu (Committee member) / Arizona State University (Publisher)
Created2018
Description

Original exhibit panel text and an associated interview with ASU faculty Charles Backus and Harvey Bryan for the exhibit presented at the Luhrs Gallery, Hayden Library, Fall, 2013.

ContributorsSpindler, Rob (Curator) / Backus, Charles (Interviewee) / Bryan, Harvey (Interviewee)
Created2013-07-01
ContributorsSpindler, Rob (Curator) / Backus, Charles (Interviewee) / Bryan, Harvey (Interviewee)
Created2013-07-01
ContributorsSpindler, Rob (Curator) / Backus, Charles (Interviewee) / Bryan, Harvey (Interviewee)
Created2013-07-01
158238-Thumbnail Image.png
Description
Computability of spray flows is an important issue, from both fundamental and practical perspectives. Spray flows have important applications in fuel injection, agriculture, medical devices, and industrial processes such as spray cooling. For this reason, many efforts have been devoted to experimental, computational and some theoretical aspects of spray

Computability of spray flows is an important issue, from both fundamental and practical perspectives. Spray flows have important applications in fuel injection, agriculture, medical devices, and industrial processes such as spray cooling. For this reason, many efforts have been devoted to experimental, computational and some theoretical aspects of spray flows. In particular, primary atomization, the process of bulk liquid transitioning to small droplets, is a central and probably the most difficult aspect of spray flows. This thesis discusses developed methods, results, and needed improvements in the modeling of primary atomization using a predictive Sauter Mean Diameter (SMD) formula. Primary atomization for round injectors and simplex atomizers is modeled using a three-step procedure. For each spray geometry, a volume-of-fluid simulation is run to resolve the trajectory of the intact liquid core. Atomization criterion is applied to the volume-of-fluid velocity field to determine atomization sites. Local droplet size is predicted at the atomization sites using the quadratic formula for Sauter Mean Diameter. Droplets with the computed drop size are injected from the atomization sites and are tracked as point-particles. A User Defined Memory (UDM) code is employed to compute steady-state Sauter Mean Diameter statistics at locations corresponding to experimental interrogation locations. The resulting Sauter Mean Diameter, droplet trajectory, and droplet velocity are compared against experimental data to validate the computational protocol. This protocol can be implemented on coarse-grid, time-averaged simulations of spray flows, and produces convincing results when compared with experimental data for pressure-atomized sprays with and without swirl. This approach is general and can be adapted in any spray geometry for complete and efficient computations of spray flows.
ContributorsGreenlee, Benjamin (Author) / Lee, Taewoo (Thesis advisor) / Herrmann, Marcus (Committee member) / Kasbaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2020
171359-Thumbnail Image.png
Description
Theoretical analyses of liquid atomization (bulk to droplet conversion) and turbulence have potential to advance the computability of these flows. Instead of relying on full computations or models, fundamental conservation equations can be manipulated to generate partial or full solutions. For example, integral form of the mass and energy for

Theoretical analyses of liquid atomization (bulk to droplet conversion) and turbulence have potential to advance the computability of these flows. Instead of relying on full computations or models, fundamental conservation equations can be manipulated to generate partial or full solutions. For example, integral form of the mass and energy for spray flows leads to an explicit relationship between the drop size and liquid velocities. This is an ideal form to integrate with existing computational fluid dynamic (CFD), which is well developed to solve for the liquid velocities, i.e., the momentum equation(s). Theoretical adaption to CFD has been performed for various injection geometries, with results that compare quite well with experimental data. Since the drop size is provided analytically, computational time/cost for simulating spray flows with liquid atomization is no more than single-phase flows. Some advances have also been made on turbulent flows, by using a new set of perspectives on transport, scaling and energy distributions. Conservation equations for turbulence momentum and kinetic energy have been derived in a coordinate frame moving with the local mean velocities, which produce the Reynolds stress components, without modeling. Scaling of the Reynolds stress is also found at the first- and second-gradient levels. Finally, maximum-entropy principle has been used to derive the energy spectra in turbulent flows.
ContributorsPark, Jung Eun (Author) / Lee, Taewoo (Thesis advisor) / Gardner, Carl (Committee member) / Huang, Huei-Ping (Committee member) / Kim, Jeonglae (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2022
Description
Power generation through heat to electrical energy conversion for space applications faces distinct challenges not encountered in terrestrial settings, where Rankine and Brayton cycles have traditionally been predominant. The unique environment of space necessitates the adoption of either static converters, leveraging solid-state physics, or closed-cycle dynamic converters. While thermoelectric generators

Power generation through heat to electrical energy conversion for space applications faces distinct challenges not encountered in terrestrial settings, where Rankine and Brayton cycles have traditionally been predominant. The unique environment of space necessitates the adoption of either static converters, leveraging solid-state physics, or closed-cycle dynamic converters. While thermoelectric generators have historically been the primary choice for heat-to-electrical energy conversion in space applications, their relatively low efficiencies and limited scope for enhancement pose significant challenges as the power demands of space missions increase. This necessitates the exploration of alternative power generation methodologies to meet the evolving requirements. This thesis provides a comprehensive analysis of various power conversion technologies for space applications, focusing on the comparative study of static and dynamic converters, with a particular emphasis on Stirling converters. Other power systems discussed include thermoelectric, thermophotovoltaic, thermionic, and Brayton converters. Through comparative analysis, the research identifies the most promising converters for future space applications.
ContributorsWilderspin, Zoe (Author) / Lee, Taewoo (Thesis director) / Holbert, Keith (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2024-05
157535-Thumbnail Image.png
Description
The aim of this research study is to develop a passive architectural design morphology, tuned to the Sonoran Desert, which redefines Desert Modernism and integrates: (a) mitigation of heat transfer through the exterior envelope, and (b) use of daylight to inform appropriate architectural massing. The research investigation was delimited

The aim of this research study is to develop a passive architectural design morphology, tuned to the Sonoran Desert, which redefines Desert Modernism and integrates: (a) mitigation of heat transfer through the exterior envelope, and (b) use of daylight to inform appropriate architectural massing. The research investigation was delimited to mid-nineteenth century European modernist examples, and ends with mid-twentieth century modern architecture in the southwestern United States as viewed through the lens of environmental design. The specific focus was on Desert Modernism, a quasi-architectural movement, which purportedly had its beginnings in 1923 with the Coachella Valley, Popinoe Desert Cabin.

A mixed-method research strategy comprised of interpretive-historical research, virtual simulation/modeling analysis and logical argumentation is used. Succinct discussions on desert vernacular design, Modernism’s global propagation, and the International Style reinterpretations were illustrated to introduce the possibility of a relationship between Modernism and the vernacular. A directed examination of climatic responses included within examples of California Modernism, the Case Study Houses and Desert Modernism follows. Three case studies: a) the Frey House II, b) the Triad Apartments, and c) the Analemma House were assessed using virtual simulation and mathematical calculations, to provide conclusive results on the relevance of regionally tuned exterior envelope design and planning tactics for the Phoenix, Arizona area. Together, these findings suggest a correlation between environmental design principles, vernacular architecture, and Modernism.
ContributorsSoltero, Ed (Author) / Zygas, Kestutis (Thesis advisor) / Bryan, Harvey (Thesis advisor) / Domin, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
157738-Thumbnail Image.png
Description
Water is one of, if not the most valuable natural resource but extremely challenging to manage. According to old research in the field, many Water Distribution Systems (WDSs) around the world lose above 40 percent of clean water pumped into the distribution system because of unfortune leaks before the water

Water is one of, if not the most valuable natural resource but extremely challenging to manage. According to old research in the field, many Water Distribution Systems (WDSs) around the world lose above 40 percent of clean water pumped into the distribution system because of unfortune leaks before the water gets anywhere from the fresh water resources. By reducing the amount of water leaked, distribution system managers can reduce the amount of money, resources, and energy wasted on finding and repairing the leaks, and then producing and pumping water, increase system reliability and more easily satisfy present and future needs of all consumers. But having access to this information pre-amatively and sufficiently can be complex and time taking. For large companies like SRP who are moving tonnes of water from various water bodies around phoenix area, it is even more crucial to efficiently locate and characterize the leaks. And phoenix being a busy city, it is not easy to go start digging everywhere, whenever a loss in pressure is reported at the destination.

Keeping this in mind, non-invasive methods to geo-physically work on it needs attention. There is a lot of potential in this field of work to even help with environmental crisis as this helps in places where water theft is big and is conducted through leaks in the distribution system. Methods like Acoustic sensing and ground penetrating radars have shown good results, and the work done in this thesis helps us realise the limitations and extents to which they can be used in the phoenix are.

The concrete pipes used by SRP are would not be able to generate enough acoustic signals to be affectively picked up by a hydrophone at the opening, so the GPR would be helpful in finding the initial location of the leak, as the water around the leak would make the sand wet and hence show a clear difference on the GPR. After that the frequency spectrum can be checked around that point which would show difference from another where we know a leak is not present.
ContributorsSrivastava, Siddhant (Author) / Lee, Taewoo (Thesis advisor) / Kwan, Beomjin (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2019