Matching Items (3,073)
Filtering by

Clear all filters

150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
150354-Thumbnail Image.png
Description
There is an inexorable link between structure and stress, both of which require study in order to truly understand the physics of thin films. To further our knowledge of thin films, the relationship between structure and stress development was examined in three separate systems in vacuum. The first was continued

There is an inexorable link between structure and stress, both of which require study in order to truly understand the physics of thin films. To further our knowledge of thin films, the relationship between structure and stress development was examined in three separate systems in vacuum. The first was continued copper thin film growth in ultra-high vacuum after adsorption of a sub-monolayer quantity of oxygen. Results showed an increase in compressive stress generation, and theory was proposed to explain the additional compressive stress within the films. The second system explored was the adsorption of carbon monoxide on the platinum {111} surface in vacuum. The experiments displayed a correlation between known structural developments in the adsorbed carbon monoxide adlayer and the surface stress state of the system. The third system consisted of the growth and annealing stresses of ice thin films at cryogenic temperatures in vacuum. It was shown that the growth stresses are clearly linked to known morphology development from literature, with crystalline ice developing compressive and amorphous ice developing tensile stresses respectively, and that amorphous ice films develop additional tensile stresses upon annealing.
ContributorsKennedy, Jordan (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2011
150335-Thumbnail Image.png
Description
Over the last decade copper electrodeposition has become the dominant process by which microelectronic interconnects are made. Replacing ultra-high vacuum evaporative film growth, the technology known as the Cu damascene process has been widely implemented in the microelectronics industry since the early 2000s. The transition from vacuum film growth to

Over the last decade copper electrodeposition has become the dominant process by which microelectronic interconnects are made. Replacing ultra-high vacuum evaporative film growth, the technology known as the Cu damascene process has been widely implemented in the microelectronics industry since the early 2000s. The transition from vacuum film growth to electrodeposition was enabled by solution chemistries that provide "bottom-up" or superfilling capability of vias and trenches. While the process has been and is used widely, the actual mechanisms responsible for superfilling remain relatively unknown. This dissertation presents and discusses the background and results of experimental investigations that have been done using in situ electrochemical surface stress monitoring techniques to study the evolution of stress on Cu{111} thin film electrodes. Because of its extreme sensitivity to the structure on both the electrode and solution sides of the interface, surface stress monitoring as analytical technique is well suited for the study of electrodeposition. These ultra-high resolution stress measurements reveal the dynamic response of copper electrodes to a number of electrochemical and chemical experimental variables. In the case of constant current pulsed deposition and stripping, the surface stress evolution depends not only on the magnitude of the current pulse, but also shows a marked response to plating bath composition. The plating bath chemistries used in this work include (1) additive free, (2) deposition suppressing solutions that include polyethylene glycol (PEG) and sodium chloride (NaCl) as well as (3) full additive solution combinations which contain PEG, NaCl, and a one of two deposition accelerating species (bis-(sodiumsulfopropyl)disulfide (SPS) or mercaptopropane sulfonic acid (MPS)). The development of thin film stress is further investigated through a series of solution exchange experiments that correlate the magnitude of electrode exchange current density and the stress state of the film. Remarkably, stress changes as large as ~8.5 N/m are observed during solution exchanges at the open circuit potential. Overall, this research demonstrates that solution chemistry can have a large impact on thin film stress evolution, even for very small deposition thicknesses (e.g. <10 ML) or in the absence of net addition or removal of material from the electrode.
ContributorsHeaton, Thomas Stanley (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
148112-Thumbnail Image.png
Description

Animals encounter information from different resources simultaneously, integrating input from multiple sensory systems before responding behaviorally. When different cues interact with one another, they may enhance, diminish, or have no impact on their responses. In this project, we test how the presence of chemical cues affect the perception of visual

Animals encounter information from different resources simultaneously, integrating input from multiple sensory systems before responding behaviorally. When different cues interact with one another, they may enhance, diminish, or have no impact on their responses. In this project, we test how the presence of chemical cues affect the perception of visual cues. Zebrafish (Danio rerio) often use both chemical cues and visual cues to communicate with shoal mates, to assess predation risk, and to locate food. For example, zebrafish rely on both olfactory cues and visual cues for kin recognition, and they frequently use both chemical and visual cues to search for and to capture prey. In zebrafish, the terminal nerve (TN) constitutes the olfacto-visual centrifugal pathway and connects the olfactory bulb with the retina, thus allowing olfactory perception also to activate visual receptors. Past studies have found that the presence of an olfactory cue can modulate visual sensitivity in zebrafish through the terminal nerve pathway. Alternatively, given that zebrafish are highly social, the presence of social chemical cues may distract individuals from responding to other visual cues, such as food and predator visual cues. Foraging and predator chemical cues, including chemical food cues and alarm cues, may also distract individuals from responding to non-essential visual cues. Here, we test whether the response to a visual cue either increases or decreases when presented in concert with alanine, an amino acid that represents the olfactory cues of zebrafish prey. We found that the presence of chemical cues did not affect whether zebrafish responded to visual cues, but that the fish took longer to respond to visual cues when chemical cues were also present. These findings suggest that different aspects of behavior could be affected by the interaction between sensory modalities. We also found that this impact of delayed response was significant only when the visual cue<br/>was weak compared to the strength of the chemical cue, suggesting that the salience of interacting cues may also have an influence on determining the outcomes of the interactions. Overall, the interactive effects of chemicals on an animal’s response to visual cues may also have wide-ranging impacts on behavior including foraging, mating, and evading predators, and the interaction of cues may affect different aspects of the same behavior.

ContributorsPuffer, Georgie Delilah (Author) / Martins, Emilia (Thesis director) / Suriyampola, Piyumika (Committee member) / Gerkin, Richard (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148116-Thumbnail Image.png
Description

Humans use emotions to communicate social cues to our peers on a daily basis. Are we able to identify context from facial expressions and match them to specific scenarios? This experiment found that people can effectively distinguish negative and positive emotions from each other from a short description. However, further

Humans use emotions to communicate social cues to our peers on a daily basis. Are we able to identify context from facial expressions and match them to specific scenarios? This experiment found that people can effectively distinguish negative and positive emotions from each other from a short description. However, further research is needed to find out whether humans can learn to perceive emotions only from contextual explanations.

ContributorsCulbert, Bailie (Author) / Hartwell, Leland (Thesis director) / McAvoy, Mary (Committee member) / School of Life Sciences (Contributor) / School of Criminology and Criminal Justice (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148119-Thumbnail Image.png
Description

Locusts are generalist herbivores meaning that they are able to consume a variety of plants. Because of their broad diet, and ability to respond rapidly to a favorable environment with giant swarms of voracious insects, they are dangerous pests. Their potential impacts on humans increase dramatically when individuals switch from

Locusts are generalist herbivores meaning that they are able to consume a variety of plants. Because of their broad diet, and ability to respond rapidly to a favorable environment with giant swarms of voracious insects, they are dangerous pests. Their potential impacts on humans increase dramatically when individuals switch from their solitarious phase to their gregarious phase where they congregate and begin marching and eventually swarming together. These swarms, often billions strong, can consume the vegetation of enormous swaths of land and can travel hundreds of kilometers in a single day producing a complex threat to food security. To better understand the biology of these important pests we explored the gut microbiome of the South American locust (Schistocerca cancellata). We hypothesized generally that the gut microbiome in this species would be critically important as has been shown in many other species. We extracted and homogenized entire guts from male S. cancellata, and then extracted gut microbiome genomic DNA. Genomic DNA was then confirmed on a gel. The initial extractions were of poor quality for sequencing, but subsequent extractions performed by collaborators during troubleshooting at Southern Illinois University Edwardsville proved more useful and were used for PCR. This resulted in the detections of the following bacterial genera in the gut of S. cancellata: Enterobacter, Enterococcus, Serratia, Pseudomonas, Actinobacter, and Weisella. With this data, we are able to speculate about the physiological roles that they hold within the locust gut generating hypotheses for further testing. Understanding the microbial composition of this species’ gut may help us better understand the locust in general in an effort to more sustainably manage them.

ContributorsGrief, Dustin (Author) / Overson, Rick (Thesis director) / Cease, Arianne (Committee member) / Peterson, Brittany (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148130-Thumbnail Image.png
Description

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between these groups. Each fiber type is characterized by unique metabolic and contractile properties, which are largely determined by the myosin heavy chain isoform (MHC) or isoform combination that the fiber expresses. In previous studies, SDS-PAGE single fiber analysis has been utilized as a method to determine MHC isoform distribution and single fiber type distribution in skeletal muscle. Herein, a methodological approach to analyze MHC isoform and fiber type distribution in skeletal muscle was fine-tuned for use in human and rodent studies. In the future, this revised methodology will be implemented to evaluate the effects of obesity and exercise on the phenotypic fiber type composition of skeletal muscle.

ContributorsOhr, Jalonna Rose (Author) / Katsanos, Christos (Thesis director) / Tucker, Derek (Committee member) / Serrano, Nathan (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148134-Thumbnail Image.png
Description

In the United States, clinical testing is monitored by the federal and state governments, held to standards to ensure the safety and efficacy of these tests, as well as maintaining privacy for patients receiving a test. In order for the ABCTL to lawfully operate in the state of Arizona, it

In the United States, clinical testing is monitored by the federal and state governments, held to standards to ensure the safety and efficacy of these tests, as well as maintaining privacy for patients receiving a test. In order for the ABCTL to lawfully operate in the state of Arizona, it had to meet various legal criteria. These major legal considerations, in no particular order, are: Clinical Laboratory Improvement Amendments compliance; FDA Emergency Use Authorization (EUA); Health Insurance Portability and Accountability Act compliance; state licensure; patient, state, and federal result reporting; and liability. <br/>In this paper, the EUA pathway will be examined and contextualized in relation to the ABCTL. This will include an examination of the FDA regulations and policies that affect the laboratory during its operations, as well as a look at the different authorization pathways for diagnostic tests present during the COVID-19 pandemic.

ContributorsJenkins, Landon James (Co-author) / Espinoza, Hale Anna (Co-author) / Filipek, Marina (Co-author) / Ross, Nathaniel (Co-author) / Salvatierra, Madeline (Co-author) / Compton, Carolyn (Thesis director) / Rigoni, Adam (Committee member) / Stanford, Michael (Committee member) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148136-Thumbnail Image.png
Description

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix Children’s Hospital, and uses a qualitative analysis of three semi-structured interviews with currently employed Child Life Specialists to understand and analyze the use of medical play, a form of play intervention with a medical theme or medical equipment. We explore the goals and benefits of medical play for hospitalized pediatric patients, the process of using medical play as an intervention, including the activity design process, the assessments and adjustments made throughout the child’s hospitalization, and the considerations and limitations to implementing medical play activities. Ultimately, we found that the element of fun that defines play can be channeled into medical play activities implemented by skilled Child Life Specialists, who are experts in their field, in clinical settings to promote several different and beneficial goals, including pediatric patient coping.

ContributorsAguiar, Lara (Co-author) / Garciapeña, Danae (Co-author) / Loebenberg, Abby (Thesis director) / Swanson, Jodi (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147839-Thumbnail Image.png
Description

What is being done to promote cultural sensitivity in healthcare settings? To find answers and solutions to the widespread deficit of cultural competence in the health care industry, this case study interviews a varied sample of five physicians consisting of three men and two women in clinical, academic, and administrative

What is being done to promote cultural sensitivity in healthcare settings? To find answers and solutions to the widespread deficit of cultural competence in the health care industry, this case study interviews a varied sample of five physicians consisting of three men and two women in clinical, academic, and administrative positions. The hypothesis was physicians do not receive cultural sensitivity training in medical school and as a result, they have to find other ways to learn about the cultures of their patients. None of the participants had received formal cultural competency training in medical school and all of them found methods to improve their cultural literacy. The study uncovered the cultural training physicians do receive is sporadic and inconsistent, which can cause some disconnect between education and real-life clinical practice. Many solutions to improve cultural competency in health care delivery are presented. The results of this exploratory research should be used to inspire future conversations about cultural competency in health care as well as the creation of support and educational services and materials to medical students and health care workers on improving cultural sensitivity in clinical practice.

ContributorsWilson, Diane Kathleen (Author) / Cortese, Denis (Thesis director) / Estevez, Dulce (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05