Matching Items (28)
148088-Thumbnail Image.png
Description

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions consist of creating a test reader that standardizes the conditions the strip is under before being measured in some way. However, this increases the cost and decreases the portability of these assays. The focus of this study is to create a machine learning algorithm that can objectively determine results of colorimetric assays under varying conditions. To ensure the flexibility of a model to several types of colorimetric assays, three models were trained on the same convolutional neural network with different datasets. The images these models are trained on consist of positive and negative images of ETG, fentanyl, and HPV Antibodies test strips taken under different lighting and background conditions. A fourth model is trained on an image set composed of all three strip types. The results from these models show it is able to predict positive and negative results to a high level of accuracy.

ContributorsFisher, Rachel (Author) / Blain Christen, Jennifer (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152233-Thumbnail Image.png
Description
Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large

Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large sample volumes from over a wide area and transporting them to laboratory testing facilities, which fail to provide any real-time information. This dissertation evaluates the systems currently utilized for in-situ field analyses and the issues hampering the successful deployment of such bioanalytial instruments for environmental applications. The design and development of high throughput, low power, and autonomous Polymerase Chain Reaction (PCR) instruments, amenable for portable field operations capable of providing quantitative results is presented here as part of this dissertation. A number of novel innovations have been reported here as part of this work in microfluidic design, PCR thermocycler design, optical design and systems integration. Emulsion microfluidics in conjunction with fluorinated oils and Teflon tubing have been used for the fluidic module that reduces cross-contamination eliminating the need for disposable components or constant cleaning. A cylindrical heater has been designed with the tubing wrapped around fixed temperature zones enabling continuous operation. Fluorescence excitation and detection have been achieved by using a light emitting diode (LED) as the excitation source and a photomultiplier tube (PMT) as the detector. Real-time quantitative PCR results were obtained by using multi-channel fluorescence excitation and detection using LED, optical fibers and a 64-channel multi-anode PMT for measuring continuous real-time fluorescence. The instrument was evaluated by comparing the results obtained with those obtained from a commercial instrument and found to be comparable. To further improve the design and enhance its field portability, this dissertation also presents a framework for the instrumentation necessary for a portable digital PCR platform to achieve higher throughputs with lower power. Both systems were designed such that it can easily couple with any upstream platform capable of providing nucleic acid for analysis using standard fluidic connections. Consequently, these instruments can be used not only in environmental applications, but portable diagnostics applications as well.
ContributorsRay, Tathagata (Author) / Youngbull, Cody (Thesis advisor) / Goryll, Michael (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2013
151306-Thumbnail Image.png
Description
Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of

Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of microscale sensors that are used for sensing applications, ranging from whole-body monitoring down to molecular sensing. Unfortunately, sensors are often developed without regard to how they will be integrated into biological systems. The complexities of integration are underappreciated. Integration involves more than simply making electrical connections. Interfacing microscale sensors with biological environments requires numerous considerations with respect to the creation of compatible packaging, the management of biological reagents, and the act of combining technologies with different dimensions and material properties. Recent advances in microfluidics, especially the proliferation of soft lithography manufacturing methods, have established the groundwork for creating systems that may solve many of the problems inherent to sensor-fluidic interaction. The adaptation of microelectronics manufacturing methods, such as Complementary Metal-Oxide-Semiconductor (CMOS) and Microelectromechanical Systems (MEMS) processes, allows the creation of a complete biological sensing system with integrated sensors and readout circuits. Combining these technologies is an obstacle to forming complete sensor systems. This dissertation presents new approaches for the design, fabrication, and integration of microscale sensors and microelectronics with microfluidics. The work addresses specific challenges, such as combining commercial manufacturing processes into biological systems and developing microscale sensors in these processes. This work is exemplified through a feedback-controlled microfluidic pH system to demonstrate the integration capabilities of microscale sensors for autonomous microenvironment control.
ContributorsWelch, David (Author) / Blain Christen, Jennifer (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Frakes, David (Committee member) / LaBelle, Jeffrey (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2012
151354-Thumbnail Image.png
Description
The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem

The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem to a transistor-level programmable hardware, is proposed. This approach enables fast system level validation and a reduction in post-Silicon bugs, minimizing design risk and cost. The unique features of the approach include 1) transistor-level programmability that emulates each transistor behavior in an analog design, achieving very fine granularity of reconfiguration; 2) programmable switches that are treated as a design component during analog transistor emulating, and optimized with the reconfiguration matrix; 3) compensation of AC performance degradation through boosting the bias current. Based on these principles, a digitally controlled PANDA platform is designed at 45nm node that can map AMS modules across 22nm to 90nm technology nodes. A systematic emulation approach to map any analog transistor to PANDA cell is proposed, which achieves transistor level matching accuracy of less than 5% for ID and less than 10% for Rout and Gm. Circuit level analog metrics of a voltage-controlled oscillator (VCO) emulated by PANDA, match to those of the original designs in 90nm nodes with less than a 5% error. Voltage-controlled delay lines at 65nm and 90nm are emulated by 32nm PANDA, which successfully match important analog metrics. And at-speed emulation is achieved as well. Several other 90nm analog blocks are successfully emulated by the 45nm PANDA platform, including a folded-cascode operational amplifier and a sample-and-hold module (S/H)
ContributorsXu, Cheng (Author) / Cao, Yu (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2012
136814-Thumbnail Image.png
Description
The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics

The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics to accomplish. An EMG sensor was used to obtain processed electrical signals produced from the muscles in the forearm and was then utilized to control the actuation speed of the tentacles. An Arduino microprocessor was used to translate the EMG signals to infrared blinking sequences which would propagate commands through a constructed circuit shield to the infrared receiver on jellyfish. The receiver will then translate the received IR sequence into actions. Then the flying device must produce enough thrust to propel the body upwards. The application of biomimetics would best test my skills as an engineer as well as provide a method of applying what I have learned over the duration of my undergraduate career.
ContributorsTsui, Jessica W (Author) / Muthuswamy, Jitteran (Thesis director) / Blain Christen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
149387-Thumbnail Image.png
Description
In this thesis two methodologies have been proposed for evaluating the fault response of analog/RF circuits. These proposed approaches are used to evaluate the response of the faulty circuit in terms of specifications/measurements. Faulty response can be used to evaluate important test metrics like fail probability, fault coverage and yield

In this thesis two methodologies have been proposed for evaluating the fault response of analog/RF circuits. These proposed approaches are used to evaluate the response of the faulty circuit in terms of specifications/measurements. Faulty response can be used to evaluate important test metrics like fail probability, fault coverage and yield coverage of given measurements under process variations. Once the models for faulty and fault free circuit are generated, one needs to perform Monte Carlo sampling (as opposed to Monte Carlo simulations) to compute these statistical parameters with high accuracy. The first method is based on adaptively determining the order of the model based on the error budget in terms of computing the statistical metrics and position of the threshold(s) to decide how precisely necessary models need to be extracted. In the second method, using hierarchy in process variations a hybrid of heuristics and localized linear models have been proposed. Experiments on LNA and Mixer using the adaptive model order selection procedure can reduce the number of necessary simulations by 7.54x and 7.03x respectively in the computation of fail probability for an error budget of 2%. Experiments on LNA using the hybrid approach can reduce the number of necessary simulations by 21.9x and 17x for four and six output parameters cases for improved accuracy in test statistics estimation.
ContributorsSubrahmaniyan Radhakrishnan, Gurusubrahmaniyan (Author) / Ozev, Sule (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2010
132153-Thumbnail Image.png
Description
This paper presents work that was done to develop an energy-efficient electoral and frame count system for underwater sea turtle image and video recognition using convolutional neural networks, deep learning framework, and the Python programming language. An underwater sea turtle image recognition program is essential to protect turtles from the

This paper presents work that was done to develop an energy-efficient electoral and frame count system for underwater sea turtle image and video recognition using convolutional neural networks, deep learning framework, and the Python programming language. An underwater sea turtle image recognition program is essential to protect turtles from the threat of bycatch - sea turtles are accidentally caught when fishermen aim for a different type of underwater species. This underwater image recognition system is used to detect the presence of sea turtles, then different kinds of acoustic and light stimuli are used to warn the turtles of approaching danger to reduce bycatch. This image detection system will be placed on a fishing boat to run on a machine at all times (24 hours and 7 days a week). A live video capture from a low-power underwater camera that is attached to the boat will be sent to the image detection system on the machine to analyze the presence of sea turtles in each frame of the video. To lower the computational time and energy of the machine, an energy-efficient electoral and frame count system is implemented on this image detection system.
ContributorsDeng, Enhong (Author) / Ozev, Sule (Thesis director) / Blain Christen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132963-Thumbnail Image.png
Description
Background: Recent interests in continuous biomonitoring and the surge of wearable biotechnology demand a better understanding of sweat as a noninvasive biomarker resource. The ability to use sweat as a biofluid provides the opportunity for noninvasive early and continuous diagnostics. This thesis serves to help fill the existing knowledge ga

Background: Recent interests in continuous biomonitoring and the surge of wearable biotechnology demand a better understanding of sweat as a noninvasive biomarker resource. The ability to use sweat as a biofluid provides the opportunity for noninvasive early and continuous diagnostics. This thesis serves to help fill the existing knowledge gap in sweat biomarker discovery and applications.

Experimental Design: In part one of this study, exercise-induced eccrine sweat was collected from 50 healthy individuals and analyzed using mass spectrometry, protein microarrays, and quantitative ELISAs to identify a broad range of proteins, antibody isotypes, and cytokines in sweat. In part two of this study, cortisol and melatonin levels were analyzed in exercise-induced sweat and plasma samples collected from 22 individuals.

Results: 220 unique proteins were identified by shotgun analysis in pooled sweat samples. Detectable antibody isotypes include IgA (100% positive; median 1230 ± 28 700 pg/mL), IgD (18%; 22.0 ± 119 pg/mL), IgG1 (96%;1640 ± 6750 pg/mL), IgG2 (37%; 292 ± 6810 pg/mL), IgG3 (71%;74.0 ± 119 pg/mL), IgG4 (69%; 43.0 ± 42.0 pg/mL), and IgM (41%;69.0 ± 1630 pg/mL). Of 42 cytokines, three were readily detected in all sweat samples (p<0.01). The median concentration for interleukin-1α was 352 ± 521 pg/mL, epidermal growth factor was 86.5 ± 147 pg/mL, and angiogenin was 38.3 ± 96.3 pg/mL. Multiple other cytokines were detected at lower levels. The median and standard deviation of cortisol was determined to be 4.17 ± 11.1 ng/mL in sweat and 76.4 ± 28.8 ng/mL in plasma. The correlation between sweat and plasma cortisol levels had an R-squared value of 0.0802 (excluding the 2 highest sweat cortisol levels). The median and standard deviation of melatonin was determined to be 73.1 ± 198 pg/mL in sweat and 194 ± 93.4 pg/mL in plasma. Similar to cortisol, the correlation between sweat and plasma melatonin had an R-squared value of 0.117.

Conclusion: These studies suggest that sweat holds more proteomic and hormonal biomarkers than previously thought and may eventually serve as a noninvasive biomarker resource. These studies also highlight many of the challenges associated with monitoring sweat content including differences between collection devices and hydration, evaporation losses, and sweat rate.
ContributorsZhu, Meilin (Author) / Anderson, Karen (Thesis director) / Blain Christen, Jennifer (Committee member) / Gronowski, Ann (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134605-Thumbnail Image.png
Description
The growth of the medical diagnostic industry in the past several decades has largely been due to the creation and iterative optimization of bio sensors. Recent pushes towards value added as well as preventative health care has made point of care devices more attractive to health care providers. Rapid detection

The growth of the medical diagnostic industry in the past several decades has largely been due to the creation and iterative optimization of bio sensors. Recent pushes towards value added as well as preventative health care has made point of care devices more attractive to health care providers. Rapid detection for diseases and cancers is done with a bio sensor, which a broad term used to describe an instrument which uses a bio chemical reaction to detect a chemical compound with the use of a bio recognition event in addition to a signal detection event. The bio sensors which are presented in this work are known as ion-sensitive field effects transistors (ISFETs) and are similar in function to a metal oxide field effect transistor (MOSFET). These ISFETs can be used to sense pH or the concentration of protons on the surface of the gate channel. These ISFETs can be used for certain bio recognition events and this work presents the application of these transistors for the quantification of tumor cell proliferation. This includes the development of a signal processing and acquisition system for the long term assessment of cellular metabolism and optimizing the system for use in an incubator. This thesis presents work done towards the optimization and implementation of complementary metal\u2014oxide\u2014semiconductor (CMOS) ISFETs as well as remote gate ISFETs for the continuous assessment of tumor cell extracellular pH. The work addresses the challenges faced with the fabrication and optimization of these sensors, which includes the mitigation of current drift with the use of pulse width modulation in addition to issues encountered with fabrication of electrodes on a quartz substrate. This work culminates in the testing of an autonomous system with mammary tumor cells as well as the assessment of cell viability in an incubator over extended periods. Future applications of this work include the creation of a remote gate ISFET array for multiplexed detection as well as the implementation of ISFETs for bio marker detection via an immunoassay.
ContributorsArafa, Hany Mohamed (Author) / Blain Christen, Jennifer (Thesis director) / LaBelle, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
163672-Thumbnail Image.png
Description
The objective of this thesis project is to identify -- and better meet -- the assistive seating needs of children, ages 5-14, with cerebral palsy. Student needs were assessed through the collection of survey responses from professionals working closely with students who have CP, and interviews conducted by the author

The objective of this thesis project is to identify -- and better meet -- the assistive seating needs of children, ages 5-14, with cerebral palsy. Student needs were assessed through the collection of survey responses from professionals working closely with students who have CP, and interviews conducted by the author with some participants. After performing a detailed needs assessment, specific design changes were suggested for current adaptive seating systems to improve clinical outcomes and user experience for students with cerebral palsy.
ContributorsFahy, Alison (Author) / Abbas, James (Thesis director) / Blain Christen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05