Matching Items (25)
Filtering by

Clear all filters

136132-Thumbnail Image.png
Description
Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on

Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on sample exteriors, a 4 mm passivating boundary layer effect was observed, impeding the carbonation process at the center. XRD analysis was used to characterize the extent of carbonation, indicating extremely poor carbonation and therefore CO2 penetration inside the visible boundary. The depth of the passivating layer was found to be independent of both time and choice of aggregate. Less than adequate strength was developed in carbonated trials due to formation of small, weakly-connected crystals, shown with SEM analysis. Additional research, especially in situ analysis with thermogravimetric analysis would be useful to determine the causation of poor carbonation performance. This technology has great potential to substitute for certain Portland cement applications if these issues can be addressed.
ContributorsHermens, Stephen Edward (Author) / Bearat, Hamdallah (Thesis director) / Dai, Lenore (Committee member) / Mobasher, Barzin (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136180-Thumbnail Image.png
Description
Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this

Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this paper investigates, for the first time, mixtures of water and the ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]) through a combined experimental and molecular dynamics study. The density, melting point, viscosity and conductivity of these mixtures were measured experimentally. The composition region below 50% water by mole was found to be dramatically different from the region above 50% water, with trends in density and melting point differing before and after that point. Water was found to have a profound effect on viscosity and conductivity of the IL, and the effect of hydrogen bonding was discussed. Molecular dynamics simulations representing the same mixture compositions were performed. Molecular ordering was observed, as were changes in this ordering corresponding to water content. Molecular ordering was related to the experimentally measured mixture properties, providing a possible explanation for the two distinct composition regions identified by experiment.
ContributorsNgan, Miranda L (Author) / Dai, Lenore (Thesis director) / Nofen, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136927-Thumbnail Image.png
Description
The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP

The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP mixtures as well as graphene/LFP mixtures and a synthesized graphene/LFP nanocomposite. Graphene synthesis was attempted before purchasing graphene materials, and further exploration of graphene synthesis is recommended due to limitations in purchased product quality. While it was determined after extensive experimentation that the graphene/LFP nanocomposite could not be successfully synthesized according to current literature information, a mixed composite of graphene/LFP was successfully tested and found to have k = 0.23 W/m*K. This result provides a starting point for further thermal testing method development and k optimization in Li-ion battery electrode nanocomposites.
ContributorsStehlik, Daniel Wesley (Author) / Chan, Candace K. (Thesis director) / Dai, Lenore (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
137708-Thumbnail Image.png
Description
Recently, a number of publications have suggested that ionic liquids (ILs) can absorb solid particles. This development may have implications in fields like oil sand processing, oil spill beach cleanup, and water treatment. In this Honors Thesis, computational investigation of this phenomenon is provided via molecular dynamics simulations. Two particle

Recently, a number of publications have suggested that ionic liquids (ILs) can absorb solid particles. This development may have implications in fields like oil sand processing, oil spill beach cleanup, and water treatment. In this Honors Thesis, computational investigation of this phenomenon is provided via molecular dynamics simulations. Two particle surface chemistries were investigated: (1) hydrocarbon-saturated and (2) silanol-saturated, representing hydrophobic and hydrophilic particles, respectively. Employing 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]-[PF6]) as a model IL, these nanoparticles were allowed to equilibrate at the IL/water and IL/hexane interfaces to observe the interfacial self-assembled structures. At the IL/water interface, the hydrocarbon-based nanoparticles were nearly completely absorbed by the IL, while the silica nanoparticles maintained equal volume in both phases. At the IL/hexane interface, the hydrocarbon nanoparticles maintained minimal interactions with the IL, whereas the silica nanoparticles were nearly completely absorbed by it. Studies of these two types of nanoparticles immersed in the bulk IL indicate that the surface chemistry has a great effect on the corresponding IL liquid structure. These effects include layering of the ions, hydrogen bonding, and irreversible absorption of some ions to the silica nanoparticle surface. These effects are quantified with respect to each nanoparticle. The results suggest that ILs likely exhibit this absorption capability because they can form solvation layers with reduced dynamics around the nanoparticles.
ContributorsMachas, Michael Stafford (Author) / Dai, Lenore (Thesis director) / Lind, Mary Laura (Committee member) / Frost, Denzil (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
137585-Thumbnail Image.png
Description
"The Wedding Dress" is a creative project investigating the history of wedding dress design that led to the design and construction of a wedding dress with historical inspiration. The project details the process of creating the wedding dress, in addition to the historical study of wedding dresses, and the designer/author's

"The Wedding Dress" is a creative project investigating the history of wedding dress design that led to the design and construction of a wedding dress with historical inspiration. The project details the process of creating the wedding dress, in addition to the historical study of wedding dresses, and the designer/author's inspiration.
ContributorsAlbasha, Heba (Author) / Facinelli, Diane (Thesis director) / Dai, Lenore (Committee member) / Raad, Nada (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
137633-Thumbnail Image.png
Description
This project is part of a larger project involving making membranes for the separation of potable water from urine solutions for applications in space travel. This project deals specifically with testing LTA nanozeolites that will be used in the membrane under a variety of acidic conditions, specifically in solutions of

This project is part of a larger project involving making membranes for the separation of potable water from urine solutions for applications in space travel. This project deals specifically with testing LTA nanozeolites that will be used in the membrane under a variety of acidic conditions, specifically in solutions of sulfuric acid, chromium trioxide, and potassium phosphate of pHs ranging from .5 to 5, in order to investigate the effects of pH, acid type, and time. They were analyzed using SEM, FTIR, and XRD, in order to analyze how much the zeolite was degraded under the conditions of each solution. It was determined that, for high pH values (4-5), potassium phosphate had the strongest effect, as it degraded the zeolite to the point of destroying the crystal structure completely. Because of the solubility limit of potassium phosphate in water, it could not be analyzed at low pH, so only sulfuric acid and chromium trioxide were analyzed at low pH (.5-3). They both had severe effects, sulfuric acid being slightly more severe, with both of them completely dissolving the zeolite at pH values of 1 and lower. Decreasing pH increased degradation for all of the acids, with pH values above 2 for sulfuric acid and chromium trioxide showing only minor degradation, and pH 5 potassium phosphate showing only minor degradation.
ContributorsWaller, Aaron Christopher (Author) / Lind, Mary Laura (Thesis director) / Dai, Lenore (Committee member) / Lin, Jerry (Committee member) / Barrett, The Honors College (Contributor)
Created2013-05
137284-Thumbnail Image.png
Description
Asymmetric polystyrene-gold composite particles are successfully synthesized alongside core-shell composite particles via a one-step Pickering emulsion polymerization method. Unlike core-shell particles which form in the droplet phase of a stabilized Pickering emulsion, asymmetric particles form via a seeded growth mechanism. These composite particles act as catalysts with higher recyclability than

Asymmetric polystyrene-gold composite particles are successfully synthesized alongside core-shell composite particles via a one-step Pickering emulsion polymerization method. Unlike core-shell particles which form in the droplet phase of a stabilized Pickering emulsion, asymmetric particles form via a seeded growth mechanism. These composite particles act as catalysts with higher recyclability than pure gold nanoparticles due to reduced agglomeration. With the addition of N-isopropylacrylamide (NIPAAM) monomers, temperature-responsive asymmetric and core-shell polystyrene/poly(N-isopropylacrylamide)-gold composite particles are also synthesized via Pickering emulsion polymerization. The asymmetric particles have a greater thermo-responsiveness than the core-shell particles due to the increased presence of NIPAAM monomers in the seeded-growth formation. Poly(N-isopropylacrylamide) (PNIPAM)-containing asymmetric particles have tunable rheological and optical properties due to their significant size decrease above the lower critical solution temperature (LCST).
ContributorsRabiah, Noelle Ibrahim (Author) / Dai, Lenore (Thesis director) / Torres, Cesar (Committee member) / Zhang, Mingmeng (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
131909-Thumbnail Image.png
Description
Evidence of Six Sigma principles dates back as far as the 1800s when normal distributions were first being introduced by Friedrich Gauss. Since then, Six Sigma has evolved and been documented into the Define, Measure, Analyze, Improve, and Control (DMAIC) methodology that is used today. Each stage in the DMAIC

Evidence of Six Sigma principles dates back as far as the 1800s when normal distributions were first being introduced by Friedrich Gauss. Since then, Six Sigma has evolved and been documented into the Define, Measure, Analyze, Improve, and Control (DMAIC) methodology that is used today. Each stage in the DMAIC methodology serves a unique purpose, and various tools have been developed to accomplish each stage’s goal. The manufacturing industry has developed its own more specified set of methods and tools that have been coined as Lean Six Sigma. The more notable Lean Six Sigma principles are TIMWOOD, SMED, and 5S.

As a case study, DMAIC methodology was used at a company that encourages Six Sigma in all its departments—Niagara Bottling. Ultimately, the company was able to cut its financial losses in fines from customers by over 15% in just a 12-week span by utilizing Six Sigma. In this, the importance of instilling an entire culture of Six Sigma is exemplified. When only a handful of team members are on board with the problem-solving mindset, it is significantly more difficult to see substantial improvements.
ContributorsHumphreys, Nicholas Michael (Author) / Dai, Lenore (Thesis director) / Lin, Wendy (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131639-Thumbnail Image.png
Description
Aluminum alloys are commonly used for engineering applications due to their high strength to weight ratio, low weight, and low cost. Pitting corrosion, accelerated by saltwater environments, leads to fatigue cracks and stress corrosion cracking during service. Two-dimensional (2D) characterization methods are typically used to identify and characterize corrosion; however,

Aluminum alloys are commonly used for engineering applications due to their high strength to weight ratio, low weight, and low cost. Pitting corrosion, accelerated by saltwater environments, leads to fatigue cracks and stress corrosion cracking during service. Two-dimensional (2D) characterization methods are typically used to identify and characterize corrosion; however, these methods are destructive and do not enable an efficient means of quantifying mechanisms of pit initiation and growth. In this study, lab-scale x-ray microtomography was used to non-destructively observe, quantify, and understand pit growth in three dimensions over a 20-day corrosion period in the AA7075-T651 alloy. The XRT process, capable of imaging sample volumes with a resolution near one micrometer, was found to be an ideal tool for large-volume pit examination. Pit depths were quantified over time using renderings of sample volumes, leading to an understanding of how inclusion particles, oxide breakdown, and corrosion mechanisms impact the growth and morphology of pits. This process, when carried out on samples produced with two different rolling directions and rolling extents, yielded novel insights into the long-term macroscopic corrosion behaviors impacted by alloy production and design. Key among these were the determinations that the alloy’s rolling direction produces a significant difference in the average growth rate of pits and that the corrosion product layer loses its passivating effect as a result of cyclic immersion. In addition, a new mechanism of pitting corrosion is proposed which is focused on the pseudo-random spatial distribution of iron-rich inclusion particles in the alloy matrix, which produces a random distribution of pit depths based on the occurrence of co-operative corrosion near inclusion clusters.
ContributorsSinclair, Daniel Ritchie (Author) / Chawla, Nikhilesh (Thesis director) / Jiao, Yang (Committee member) / Bale, Hrishikesh (Committee member) / School of International Letters and Cultures (Contributor) / Materials Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131642-Thumbnail Image.png
Description
Ionic liquids are salts with low melting temperatures that maintain their liquid form below 100 °C, or even at ambient temperature. Ionic liquids are conductive, electrochemically stable, non-volatile, and have a low vapor pressure, making them a class of excellent candidate materials for electrolytes in energy storage, electrodeposition, batteries,

Ionic liquids are salts with low melting temperatures that maintain their liquid form below 100 °C, or even at ambient temperature. Ionic liquids are conductive, electrochemically stable, non-volatile, and have a low vapor pressure, making them a class of excellent candidate materials for electrolytes in energy storage, electrodeposition, batteries, fuel cells, and supercapacitors. Due to their multiple advantages, the use of ionic liquids on Earth has been widely studied; however, further research must be done before their implementation in space. The extreme temperatures encountered during space travel and extra-terrestrial deployment have the potential to greatly affect the liquid electrolyte system. Examples of low temperature planetary bodies are the permanently shadowed sections of the moon or icy surfaces of Jupiter’s moons. Recent studies have explored the limits of glass transition temperatures for ionic liquid systems. The project is centered around the development of an ionic liquid system for a molecular electronic transducer seismometer that would be deployed on the low temperature system of Europa. For this project, molecular dynamics simulations used input intermolecular and intramolecular parameters that then simulated molecular interactions. Molecular dynamics simulations are based around the statistical mechanics of chemistry and help calculate equilibrium properties that are not easily calculated by hand. These simulations will give insight into what interactions are significant inside a ionic liquid solution. The simulations aim to create an understanding how ionic liquid electrolyte systems function at a molecular level. With this knowledge one can tune their system and its contents to adapt the systems properties to fit all environments the seismometers will experience.
ContributorsDavis, Vincent Champneys (Author) / Dai, Lenore (Thesis director) / Gliege, Marisa (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05