Matching Items (84)
150388-Thumbnail Image.png
Description
The main objective of this project was to create a framework for holistic ideation and research about the technical issues involved in creating a holistic approach. Towards that goal, we explored different components of ideation (both logical and intuitive), characterized ideation states, and found new ideation blocks with strategies used

The main objective of this project was to create a framework for holistic ideation and research about the technical issues involved in creating a holistic approach. Towards that goal, we explored different components of ideation (both logical and intuitive), characterized ideation states, and found new ideation blocks with strategies used to overcome them. One of the major contributions of this research is the method by which easy traversal between different ideation methods with different components were facilitated, to support both creativity and functional quality. Another important part of the framework is the sensing of ideation states (blocks/ unfettered ideation) and investigation of matching ideation strategies most likely to facilitate progress. Some of the ideation methods embedded in the initial holistic test bed are Physical effects catalog, working principles catalog, TRIZ, Bio-TRIZ and Artifacts catalog. Repositories were created for each of those. This framework will also be used as a research tool to collect large amount of data from designers about their choice of ideation strategies used, and their effectiveness. Effective documentation of design ideation paths is also facilitated using this holistic approach. A computer tool facilitating holistic ideation was developed. Case studies were run on different designers to document their ideation states and their choice of ideation strategies to come up with a good solution to solve the same design problem.
ContributorsMohan, Manikandan (Author) / Shah, Jami J. (Thesis advisor) / Huebner, Kenneth (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
147992-Thumbnail Image.png
Description

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario.

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario. In the paper we investigate how learning architectures can be manipulated for problem specific geometry. The result of this research provides that these problem specific models are valuable for accurate learning and predicting the dynamics of physics systems.<br/><br/>In order to properly model the physics of a real pendulum, modifications were made to a prior architecture which was sufficient in modeling an ideal pendulum. The necessary modifications to the previous network [13] were problem specific and not transferrable to all other non-conservative physics scenarios. The modified architecture successfully models real pendulum dynamics. This case study provides a basis for future research in augmenting the symplectic gradient of a Hamiltonian energy function to provide a generalized, non-conservative physics model.<br/><br/>A problem specific architecture was also utilized to create an accurate model for the two-car intersection case. The Costate Network proved to be an improvement from the previously used Value Network [17]. Note that this comparison is applied lightly due to slight implementation differences. The development of the Costate Network provides a basis for using characteristics to decompose functions and create a simplified learning problem.<br/><br/>This paper is successful in creating new opportunities to develop physics models, in which the sample cases should be used as a guide for modeling other real and pseudo physics. Although the focused models in this paper are not generalizable, it is important to note that these cases provide direction for future research.

ContributorsMerry, Tanner (Author) / Ren, Yi (Thesis director) / Zhang, Wenlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149950-Thumbnail Image.png
Description
With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in

With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in teamwork, and team members' movement and face-to-face interaction strength in the wild. Using sociometric badges (wearable sensors), electronic Experience Sampling Methods (ESM), the KEYS team creativity assessment instrument, and qualitative methods, three research studies were conducted in academic and industry R&D; labs. Sociometric badges captured movement of team members and face-to-face interaction between team members. KEYS scale was implemented using ESM for self-rated creativity and expert-coded creativity assessment. Activities (movement and face-to-face interaction) and creativity of one five member and two seven member teams were tracked for twenty five days, eleven days, and fifteen days respectively. Day wise values of movement and face-to-face interaction for participants were mean split categorized as creative and non-creative using self- rated creativity measure and expert-coded creativity measure. Paired-samples t-tests [t(36) = 3.132, p < 0.005; t(23) = 6.49 , p < 0.001] confirmed that average daily movement energy during creative days (M = 1.31, SD = 0.04; M = 1.37, SD = 0.07) was significantly greater than the average daily movement of non-creative days (M = 1.29, SD = 0.03; M = 1.24, SD = 0.09). The eta squared statistic (0.21; 0.36) indicated a large effect size. A paired-samples t-test also confirmed that face-to-face interaction tie strength of team members during creative days (M = 2.69, SD = 4.01) is significantly greater [t(41) = 2.36, p < 0.01] than the average face-to-face interaction tie strength of team members for non-creative days (M = 0.9, SD = 2.1). The eta squared statistic (0.11) indicated a large effect size. The combined approach of principal component analysis (PCA) and linear discriminant analysis (LDA) conducted on movement and face-to-face interaction data predicted creativity with 87.5% and 91% accuracy respectively. This work advances creativity research and provides a foundation for sensor based real-time creativity support tools for teams.
ContributorsTripathi, Priyamvada (Author) / Burleson, Winslow (Thesis advisor) / Liu, Huan (Committee member) / VanLehn, Kurt (Committee member) / Pentland, Alex (Committee member) / Arizona State University (Publisher)
Created2011
150224-Thumbnail Image.png
Description
Lots of previous studies have analyzed human tutoring at great depths and have shown expert human tutors to produce effect sizes, which is twice of that produced by an intelligent tutoring system (ITS). However, there has been no consensus on which factor makes them so effective. It is important to

Lots of previous studies have analyzed human tutoring at great depths and have shown expert human tutors to produce effect sizes, which is twice of that produced by an intelligent tutoring system (ITS). However, there has been no consensus on which factor makes them so effective. It is important to know this, so that same phenomena can be replicated in an ITS in order to achieve the same level of proficiency as expert human tutors. Also, to the best of my knowledge no one has looked at student reactions when they are working with a computer based tutor. The answers to both these questions are needed in order to build a highly effective computer-based tutor. My research focuses on the second question. In the first phase of my thesis, I analyzed the behavior of students when they were working with a step-based tutor Andes, using verbal-protocol analysis. The accomplishment of doing this was that I got to know of some ways in which students use a step-based tutor which can pave way for the creation of more effective computer-based tutors. I found from the first phase of the research that students often keep trying to fix errors by guessing repeatedly instead of asking for help by clicking the hint button. This phenomenon is known as hint refusal. Surprisingly, a large portion of the student's foundering was due to hint refusal. The hypothesis tested in the second phase of the research is that hint refusal can be significantly reduced and learning can be significantly increased if Andes uses more unsolicited hints and meta hints. An unsolicited hint is a hint that is given without the student asking for one. A meta-hint is like an unsolicited hint in that it is given without the student asking for it, but it just prompts the student to click on the hint button. Two versions of Andes were compared: the original version and a new version that gave more unsolicited and meta-hints. During a two-hour experiment, there were large, statistically reliable differences in several performance measures suggesting that the new policy was more effective.
ContributorsRanganathan, Rajagopalan (Author) / VanLehn, Kurt (Thesis advisor) / Atkinson, Robert (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
150234-Thumbnail Image.png
Description
Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality

Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts - abstraction, arrays of objects, and inheritance - in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.
ContributorsBillionniere, Elodie V (Author) / Collofello, James (Thesis advisor) / Ganesh, Tirupalavanam G. (Thesis advisor) / VanLehn, Kurt (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
150293-Thumbnail Image.png
Description
Strong communities are important for society. One of the most important community builders, making friends, is poorly supported online. Dating sites support it but in romantic contexts. Other major social networks seem not to encourage it because either their purpose isn't compatible with introducing strangers or the prevalent methods of

Strong communities are important for society. One of the most important community builders, making friends, is poorly supported online. Dating sites support it but in romantic contexts. Other major social networks seem not to encourage it because either their purpose isn't compatible with introducing strangers or the prevalent methods of introduction aren't effective enough to merit use over real word alternatives. This paper presents a novel digital social network emphasizing creating friendships. Research has shown video chat communication can reach in-person levels of trust; coupled with a game environment to ease the discomfort people often have interacting with strangers and a recommendation engine, Zazzer, the presented system, allows people to meet and get to know each other in a manner much more true to real life than traditional methods. Its network also allows players to continue to communicate afterwards. The evaluation looks at real world use, measuring the frequency with which players choose the video chat game versus alternative, more traditional methods of online introduction. It also looks at interactions after the initial meeting to discover how effective video chat games are in creating sticky social connections. After initial use it became apparent a critical mass of users would be necessary to draw strong conclusions, however the collected data seemed to give preliminary support to the idea that video chat games are more effective than traditional ways of meeting online in creating new relationships.
ContributorsSorensen, Asael (Author) / VanLehn, Kurt (Thesis advisor) / Liu, Huan (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
137617-Thumbnail Image.png
Description
This honors thesis utilizes smart home components and concepts from Dr. Burleson's Game as Life, Life as Game (GaLLaG) systems. The thesis focuses on an automated lifestyle, where individuals utilize technology, such as door sensors, appliance and lamp modules, and system notifications, to assist in daily activities. The findings from

This honors thesis utilizes smart home components and concepts from Dr. Burleson's Game as Life, Life as Game (GaLLaG) systems. The thesis focuses on an automated lifestyle, where individuals utilize technology, such as door sensors, appliance and lamp modules, and system notifications, to assist in daily activities. The findings from our efforts to date indicate that after weeks of observations, there is no evidence that automated lifestyles create more productive and healthy lifestyles and lead to overall satisfaction in life; however, there are certain design principles that would assist future home automation applications.
ContributorsRosales, Justin Bart (Author) / Burleson, Winslow (Thesis director) / Walker, Erin (Committee member) / Hekler, Eric (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
151793-Thumbnail Image.png
Description
Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to

Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to create high level motion plans to control robots in the field by converting a visual representation of the motion/task plan into a Linear Temporal Logic (LTL) specification. The visual interface is built on the Android tablet platform and provides functionality to create task plans through a set of well defined gestures and on screen controls. It uses the notion of waypoints to quickly and efficiently describe the motion plan and enables a variety of complex Linear Temporal Logic specifications to be described succinctly and intuitively by the user without the need for the knowledge and understanding of LTL specification. Thus, it opens avenues for its use by personnel in military, warehouse management, and search and rescue missions. This thesis describes the construction of LTL for various scenarios used for robot navigation using the visual interface developed and leverages the use of existing LTL based motion planners to carry out the task plan by a robot.
ContributorsSrinivas, Shashank (Author) / Fainekos, Georgios (Thesis advisor) / Baral, Chitta (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2013
151321-Thumbnail Image.png
Description
This thesis concerns the role of geometric imperfections on assemblies in which the location of a target part is dependent on supports at two features. In some applications, such as a turbo-machine rotor that is supported by a series of parts at each bearing, it is the interference or clearance

This thesis concerns the role of geometric imperfections on assemblies in which the location of a target part is dependent on supports at two features. In some applications, such as a turbo-machine rotor that is supported by a series of parts at each bearing, it is the interference or clearance at a functional target feature, such as at the blades that must be controlled. The first part of this thesis relates the limits of location for the target part to geometric imperfections of other parts when stacked-up in parallel paths. In this section parts are considered to be rigid (non-deformable). By understanding how much of variation from the supporting parts contribute to variations of the target feature, a designer can better utilize the tolerance budget when assigning values to individual tolerances. In this work, the T-Map®, a spatial math model is used to model the tolerance accumulation in parallel assemblies. In other applications where parts are flexible, deformations are induced when parts in parallel are clamped together during assembly. Presuming that perfectly manufactured parts have been designed to fit perfectly together and produce zero deformations, the clamping-induced deformations result entirely from the imperfect geometry that is produced during manufacture. The magnitudes and types of these deformations are a function of part dimensions and material stiffnesses, and they are limited by design tolerances that control manufacturing variations. These manufacturing variations, if uncontrolled, may produce high enough stresses when the parts are assembled that premature failure can occur before the design life. The last part of the thesis relates the limits on the largest von Mises stress in one part to functional tolerance limits that must be set at the beginning of a tolerance analysis of parts in such an assembly.
ContributorsJaishankar, Lupin Niranjan (Author) / Davidson, Joseph K. (Thesis advisor) / Shah, Jami J. (Committee member) / Mignolet, Marc P (Committee member) / Arizona State University (Publisher)
Created2012