Matching Items (87)
Filtering by

Clear all filters

150358-Thumbnail Image.png
Description
During the twentieth-century, the dual influence of nationalism and modernism in the eclectic music from Latin America promoted an idiosyncratic style which naturally combined traditional themes, popular genres and secular music. The saxophone, commonly used as a popular instrument, started to develop a prominent role in Latin American classical music

During the twentieth-century, the dual influence of nationalism and modernism in the eclectic music from Latin America promoted an idiosyncratic style which naturally combined traditional themes, popular genres and secular music. The saxophone, commonly used as a popular instrument, started to develop a prominent role in Latin American classical music beginning in 1970. The lack of exposure and distribution of the Latin American repertoire has created a general perception that composers are not interested in the instrument, and that Latin American repertoire for classical saxophone is minimal. However, there are more than 1100 works originally written for saxophone in the region, and the amount continues to grow. This Modern Latin American Repertoire for Classical Saxophone: Recording Project and Performance Guide document establishes and exhibits seven works by seven representative Latin American composers.The recording includes works by Carlos Gonzalo Guzman (Colombia), Ricardo Tacuchian (Brazil), Roque Cordero (Panama), Luis Naón (Argentina), Andrés Alén-Rodriguez (Cuba), Alejandro César Morales (Mexico) and Jose-Luis Maúrtua (Peru), featuring a range of works for solo alto saxophone to alto saxophone with piano, alto saxophone with vibraphone, and tenor saxophone with electronic tape; thus forming an important selection of Latin American repertoire. Complete recorded performances of all seven pieces are supplemented by biographical, historical, and performance practice suggestions. The result is a written and audio guide to some of the most important pieces composed for classical saxophone in Latin America, with an emphasis on fostering interest in, and research into, composers who have contributed in the development and creation of the instrument in Latin America.
ContributorsOcampo Cardona, Javier Andrés (Author) / McAllister, Timothy (Thesis advisor) / Spring, Robert (Committee member) / Hill, Gary (Committee member) / Pilafian, Sam (Committee member) / Rogers, Rodney (Committee member) / Gardner, Joshua (Committee member) / Arizona State University (Publisher)
Created2011
Description
The study of artist transcriptions is an effective vehicle for assimilating the language and style of jazz. Pairing transcriptions with historical context provides further insight into the back story of the artists' life and method. Innovators are often the subject of published studies of this kind, but transcriptions of plunger-mute

The study of artist transcriptions is an effective vehicle for assimilating the language and style of jazz. Pairing transcriptions with historical context provides further insight into the back story of the artists' life and method. Innovators are often the subject of published studies of this kind, but transcriptions of plunger-mute master Al Grey have been overlooked. This document fills that void, combining historical context with thirteen transcriptions of Grey's trombone features and improvisations. Selection of transcribed materials was based on an examination of historically significant solos in Al Grey's fifty-five-year career. The results are a series of open-horn and plunger solos that showcase Grey's sound, technical brilliance, and wide range of dynamics and articulation. This collection includes performances from a mix of widely available and obscure recordings, the majority coming from engagements with the Count Basie Orchestra. Methods learned from the study of Al Grey's book Plunger Techniques were vital in the realization of his work. The digital transcription software Amazing Slow Downer by Roni Music aided in deciphering some of Grey's more complicated passages and, with octave displacement, helped bring previously inaudible moments to the foreground.
ContributorsHopkins, Charles E (Author) / Pilafian, Sam (Thesis advisor) / Stauffer, Sandra (Committee member) / Solís, Ted (Committee member) / Ericson, John (Committee member) / Kocour, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150262-Thumbnail Image.png
Description
This study examines the experiences of participants enrolled in an online community college jazz history course. I surveyed the participants before the course began and observed them in the online space through the duration of the course. Six students also participated in interviews during and after the course. Coded data

This study examines the experiences of participants enrolled in an online community college jazz history course. I surveyed the participants before the course began and observed them in the online space through the duration of the course. Six students also participated in interviews during and after the course. Coded data from the interviews, surveys, and recorded discussion posts and journal entries provided evidence about the nature of interaction and engagement in learning in an online environment. I looked for evidence either supporting or detracting from a democratic online learning environment, concentrating on the categories of student engagement, freedom of expression, and accessibility. The data suggested that the participants' behaviors in and abilities to navigate the online class were influenced by their pre-existing native media habits. Participants' reasons for enrolling in the online course, which included convenience and schedule flexibility, informed their actions and behaviors in the class. Analysis revealed that perceived positive student engagement did not contribute to a democratic learning environment but rather to an easy, convenient experience in the online class. Finally, the data indicated that participants' behaviors in their future lives would not be affected by the online class in that their learning experiences were not potent enough to alter or inform their behavior in society. As online classes gain popularity, the ability of these classes to provide meaningful learning experiences must be questioned. Students in this online jazz history class presented, at times, a façade of participation and community building but demonstrated a lack of sincerity and interest in the course. The learning environment supported accessibility and freedom of expression to an extent, but students' engagement with their peers was limited. Overall, this study found a need for more research into the quality of online classes as learning platforms that support democracy, student-to-student interaction, and community building.
ContributorsHunter, Robert W. (Author) / Stauffer, Sandra L (Thesis advisor) / Tobias, Evan (Thesis advisor) / Bush, Jeffrey (Committee member) / Kocour, Michael (Committee member) / Pilafian, Sam (Committee member) / Arizona State University (Publisher)
Created2011
151803-Thumbnail Image.png
Description
Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives

Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives a strong representation of these characteristics. Many previous studies have shown that the arm posture is a dominant factor for determining the end point impedance in a horizontal plane (transverse plane). The objective of this thesis is to characterize end point impedance of the human arm in the three dimensional (3D) space. Moreover, it investigates and models the control of the arm impedance due to increasing levels of muscle co-contraction. The characterization is done through experimental trials where human subjects maintained arm posture, while perturbed by a robot arm. Moreover, the subjects were asked to control the level of their arm muscles' co-contraction, using visual feedback of their muscles' activation, in order to investigate the effect of the muscle co-contraction on the arm impedance. The results of this study showed a very interesting, anisotropic increase of the arm stiffness due to muscle co-contraction. This can lead to very useful conclusions about the arm biomechanics as well as many implications for human motor control and more specifically the control of arm impedance through muscle co-contraction. The study finds implications for the EMG-based control of robots that physically interact with humans.
ContributorsPatel, Harshil Naresh (Author) / Artemiadis, Panagiotis (Thesis advisor) / Berman, Spring (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
150560-Thumbnail Image.png
Description
The number of Brazilian immigrants in the United States has greatly increased over the past three decades. In Phoenix, Arizona, this population increase reveals itself through a greater number of large Brazilian cultural events and higher demand for live Brazilian music. Music is so embedded in Brazilian culture that it

The number of Brazilian immigrants in the United States has greatly increased over the past three decades. In Phoenix, Arizona, this population increase reveals itself through a greater number of large Brazilian cultural events and higher demand for live Brazilian music. Music is so embedded in Brazilian culture that it serves as the ideal medium through which immigrants can reconnect to their Brazilian heritage. In this thesis, I contend that Brazilian immigrants in Phoenix, Arizona maintain their identity as Brazilians through various activities extracted from their home culture, the most prominent being musical interaction and participation. My research reveals three primary factors which form a foundation for maintaining cultural identity through music within the Brazilian immigrant community in Phoenix. These include the common experiences of immigration, diasporic identity, and the role of music within this diaspora. Music is one of the stronger art forms for representing emotions and creating an experience of relationship and connections. Music creates a medium with which to confirm identity, and makes the Brazilian immigrant population visible to other Americans and outsiders. While other Brazilian activities can also serve to maintain immigrants' identity, it is clear to me from five years of participant-observation that musical interaction and participation is the most prominent and effective means for Brazilians in Phoenix to maintain their cultural identity while living in the U.S. As a community, music unites the experiences of the Brazilian immigrants and removes them from the periphery of life in a new society.
ContributorsSwietlik, Amy (Author) / Solís, Ted (Thesis advisor) / Norton, Kay (Committee member) / Pilafian, Sam (Committee member) / Arizona State University (Publisher)
Created2012
161595-Thumbnail Image.png
Description
With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent

With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent interaction with humans. The requirement elicits an essential problem of how to properly model human behavior, especially when individuals are interacting or cooperating with each other. The major objective of this thesis is to utilize the human intention decoding method to help robots enhance their performance while interacting with humans. Preliminary work on integrating human intention estimation with an HRI scenario is shown to demonstrate the benefit. In order to achieve this goal, the research topic is divided into three phases. First, a novel method of an online measure of the human's reliance on the robot, which can be estimated through the intention decoding process from human actions,is described. An experiment that requires human participants to complete an object-moving task with a robot manipulator was conducted under different conditions of distractions. A relationship is discovered between human intention and trust while participants performed a familiar task with no distraction. This finding suggests a relationship between the psychological construct of trust and joint physical coordination, which bridges the human's action to its mental states. Then, a novel human collaborative dynamic model is introduced based on game theory and bounded rationality, which is a novel method to describe human dyadic behavior with the aforementioned theories. The mutual intention decoding process was also considered to inform this model. Through this model, the connection between the mental states of the individuals to their cooperative actions is indicated. A haptic interface is developed with a virtual environment and the experiments are conducted with 30 human subjects. The result suggests the existence of mutual intention decoding during the human dyadic cooperative behaviors. Last, the empirical results show that allowing agents to have empathy in inference, which lets the agents understand that others might have a false understanding of their intentions, can help to achieve correct intention inference. It has been verified that knowledge about vehicle dynamics was also important to correctly infer intentions. A new courteous policy is proposed that bounded the courteous motion using its inferred set of equilibrium motions. A simulation, which is set to reproduce an intersection passing case between an autonomous car and a human driving car, is conducted to demonstrate the benefit of the novel courteous control policy.
ContributorsWang, Yiwei (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
171752-Thumbnail Image.png
Description
Building and optimizing a design for deformable media can be extremely costly. However, granular scaling laws enable the ability to predict system velocity and mobility power consumption by testing at a smaller scale in the same environment. The validity of the granular scaling laws for arbitrarily shaped wheels and screws

Building and optimizing a design for deformable media can be extremely costly. However, granular scaling laws enable the ability to predict system velocity and mobility power consumption by testing at a smaller scale in the same environment. The validity of the granular scaling laws for arbitrarily shaped wheels and screws were evaluated in materials like silica sand and BP-1, a lunar simulant. Different wheel geometries, such as non-grousered and straight and bihelically grousered wheels were created and tested using 3D printed technologies. Using the granular scaling laws and the empirical data from initial experiments, power and velocity were predicted for a larger scaled version then experimentally validated on a dynamic mobility platform. Working with granular media has high variability in material properties depending on initial environmental conditions, so particular emphasis was placed on consistency in the testing methodology. Through experiments, these scaling laws have been validated with defined use cases and limitations.
ContributorsMcbryan, Teresa (Author) / Marvi, Hamidreza (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2022
171773-Thumbnail Image.png
Description
Chemical Reaction Networks (CRNs) provide a useful framework for modeling andcontrolling large numbers of agents that undergo stochastic transitions between a set of states in a manner similar to chemical compounds. By utilizing CRN models to design agent control policies, some of the computational challenges in the coordination of multi-agent systems can be

Chemical Reaction Networks (CRNs) provide a useful framework for modeling andcontrolling large numbers of agents that undergo stochastic transitions between a set of states in a manner similar to chemical compounds. By utilizing CRN models to design agent control policies, some of the computational challenges in the coordination of multi-agent systems can be overcome. In this thesis, a CRN model is developed that defines agent control policies for a multi-agent construction task. The use of surface CRNs to overcome the tradeoff between speed and accuracy of task performance is explained. The computational difficulties involved in coordinating multiple agents to complete collective construction tasks is then discussed. A method for stochastic task and motion planning (TAMP) is proposed to explain how a TAMP solver can be applied with CRNs to coordinate multiple agents. This work defines a collective construction scenario in which a group of noncommunicating agents must rearrange blocks on a discrete domain with obstacles into a predefined target distribution. Four different construction tasks are considered with 10, 20, 30, or 40 blocks, and a simulation of each scenario with 2, 4, 6, or 8 agents is performed. As the number of blocks increases, the construction problem becomes more complex, and a given population of agents requires more time to complete the task. Populations of fewer than 8 agents are unable to solve the 30-block and 40-block problems in the allotted simulation time, suggesting an inflection point for computational feasibility, implying that beyond that point the solution times for fewer than 8 agents would be expected to increase significantly. For a group of 8 agents, the time to complete the task generally increases as the number of blocks increases, except for the 30-block problem, which has specifications that make the task slightly easier for the agents to complete compared to the 20-block problem. For the 10-block and 20- block problems, the time to complete the task decreases as the number of agents increases; however, the marginal effect of each additional two agents on this time decreases. This can be explained through the pigeonhole principle: since there area finite number of states, when the number of agents is greater than the number of available spaces, deadlocks start to occur and the expectation is that the overall solution time to tend to infinity.
ContributorsKamojjhala, Pranav (Author) / Berman, Spring (Thesis advisor) / Fainekos, Gergios E (Thesis advisor) / Pavlic, Theodore P (Committee member) / Arizona State University (Publisher)
Created2022
171787-Thumbnail Image.png
Description
A Graph Neural Network (GNN) is a type of neural network architecture that operates on data consisting of objects and their relationships, which are represented by a graph. Within the graph, nodes represent objects and edges represent associations between those objects. The representation of relationships and correlations between data is

A Graph Neural Network (GNN) is a type of neural network architecture that operates on data consisting of objects and their relationships, which are represented by a graph. Within the graph, nodes represent objects and edges represent associations between those objects. The representation of relationships and correlations between data is unique to graph structures. GNNs exploit this feature of graphs by augmenting both forms of data, individual and relational, and have been designed to allow for communication and sharing of data within each neural network layer. These benefits allow each node to have an enriched perspective, or a better understanding, of its neighbouring nodes and its connections to those nodes. The ability of GNNs to efficiently process high-dimensional node data and multi-faceted relationships among nodes gives them advantages over neural network architectures such as Convolutional Neural Networks (CNNs) that do not implicitly handle relational data. These quintessential characteristics of GNN models make them suitable for solving problems in which the correspondences among input data are needed to produce an accurate and precise representation of these data. GNN frameworks may significantly improve existing communication and control techniques for multi-agent tasks by implicitly representing not only information associated with the individual agents, such as agent position, velocity, and camera data, but also their relationships with one another, such as distances between the agents and their ability to communicate with one another. One such task is a multi-agent navigation problem in which the agents must coordinate with one another in a decentralized manner, using proximity sensors only, to navigate safely to their intended goal positions in the environment without collisions or deadlocks. The contribution of this thesis is the design of an end-to-end decentralized control scheme for multi-agent navigation that utilizes GNNs to prevent inter-agent collisions and deadlocks. The contributions consist of the development, simulation and evaluation of the performance of an advantage actor-critic (A2C) reinforcement learning algorithm that employs actor and critic networks for training that simultaneously approximate the policy function and value function, respectively. These networks are implemented using GNN frameworks for navigation by groups of 3, 5, 10 and 15 agents in simulated two-dimensional environments. It is observed that in $40\%$ to $50\%$ of the simulation trials, between 70$\%$ to 80$\%$ of the agents reach their goal positions without colliding with other agents or becoming trapped in deadlocks. The model is also compared to a random run simulation, where actions are chosen randomly for the agents and observe that the model performs notably well for smaller groups of agents.
ContributorsAyalasomayajula, Manaswini (Author) / Berman, Spring (Thesis advisor) / Mian, Sami (Committee member) / Pavlic, Theodore (Committee member) / Arizona State University (Publisher)
Created2022
168538-Thumbnail Image.png
Description
Recently, Generative Adversarial Networks (GANs) have been applied to the problem of Cold-Start Recommendation, but the training performance of these models is hampered by the extreme sparsity in warm user purchase behavior. This thesis introduces a novel representation for user-vectors by combining user demographics and user preferences, making the model

Recently, Generative Adversarial Networks (GANs) have been applied to the problem of Cold-Start Recommendation, but the training performance of these models is hampered by the extreme sparsity in warm user purchase behavior. This thesis introduces a novel representation for user-vectors by combining user demographics and user preferences, making the model a hybrid system which uses Collaborative Filtering and Content Based Recommendation. This system models user purchase behavior using weighted user-product preferences (explicit feedback) rather than binary user-product interactions (implicit feedback). Using this a novel sparse adversarial model, Sparse ReguLarized Generative Adversarial Network (SRLGAN), is developed for Cold-Start Recommendation. SRLGAN leverages the sparse user-purchase behavior which ensures training stability and avoids over-fitting on warm users. The performance of SRLGAN is evaluated on two popular datasets and demonstrate state-of-the-art results.
ContributorsShah, Aksheshkumar Ajaykumar (Author) / Venkateswara, Hemanth (Thesis advisor) / Berman, Spring (Thesis advisor) / Ladani, Leila J (Committee member) / Arizona State University (Publisher)
Created2022