Matching Items (27)
148163-Thumbnail Image.png
Description

The following paper explores the various effects of stress on the endocrine system. Many understand that being stressed can jeopardize maintaining adequate health, but what specifically happens when humans are stressed? Why does stress affect human health? This paper delves into background information, previous research, and the depths to which

The following paper explores the various effects of stress on the endocrine system. Many understand that being stressed can jeopardize maintaining adequate health, but what specifically happens when humans are stressed? Why does stress affect human health? This paper delves into background information, previous research, and the depths to which stress negatively affects the body. The effects stress has on the endocrine system, specifically on the hypothalamic-pituitary-thyroid axis (HPT) and hypothalamic-pituitary-adrenal axis (HPA), is discussed, and additionally, at home de-stressing methods are researched. The study included a set of participants at Arizona State University. The method took place over the course of 2 weeks: one normal week, and the other with the implementation of a de-stressing method. The normal week involved the participants living their daily lives with the addition of a stress-measuring survey, while the second week involved implementing a de-stressing method and stress-measuring survey. The purpose of this study was to discover if there was a correlation between performing these relaxation activities and decreasing stress levels in ASU students. The results found that students reported they felt more relaxed and calm after the activities. Overall, this thesis provides information and first hand research on the effects of stress and stress-reducing activities and discusses the importance of maintaining lower stress levels throughout everyday life.

ContributorsWeissmann, Megan Diane (Co-author) / Gebara, Nayla (Co-author) / Don, Rachael (Thesis director) / Irving, Andrea (Committee member) / Kizer, Elizabeth (Committee member) / College of Health Solutions (Contributor) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136090-Thumbnail Image.png
Description
Rainbowfish, Melanotaenia splendida, are a common freshwater species in tropical regions of the world. They are members of the Atheriniformes (Atherinomorpha), the silverside fishes, which are known for some unusual feeding behaviors. Their close relatives, the Cypriniformes, such as mollies, guppies, and mosquitofish, are well studied and exhibit innovative morphologies

Rainbowfish, Melanotaenia splendida, are a common freshwater species in tropical regions of the world. They are members of the Atheriniformes (Atherinomorpha), the silverside fishes, which are known for some unusual feeding behaviors. Their close relatives, the Cypriniformes, such as mollies, guppies, and mosquitofish, are well studied and exhibit innovative morphologies associated with feeding. The third member of the Atherinomorphs, the Beloniformes, contains the recognizably odd needlefish, halfbeaks, and flying fishes. As a group, it is fair to say that the Atherinomorpha contain some pretty unusual fishes. The purpose of this project was to gain a further understanding of the unique feeding kinematics of Atheriniform fishes using the rainbowfish as an exemplar species. Feeding kinematics were quantified using high speed video recording unrestrained feeding events. Three feeding events from five individuals were analyzed frame by frame, from the time of the mouth opening to mouth closing. The X,Y coordinates of seven specific points were used to calculate the following kinematic variables: cranial elevation, gape distance, premaxillary protrusion, and hyoid depression. The contribution of cranial elevation to the strike was inconsistent. At times the fish raised the head as they expanded the mouth for prey capture, and at other times they did not. Cranial elevation is theoretically important for expanding the head during suction prey capture. Hyoid depression was more consistent, and clearly contributed to expansion of the head elements. Premaxillary protrusion contributed strongly to the event, and the jaws are closed with the premaxilla still protruded, facilitating a ‘nipping’ style jaw closure. A nipping style of prey capture is much like the Cyprinodontiforms, however, in rainbowfish, the event was quicker, and appeared to rely heavily on suction. We used both cleared and stained specimens and CT scans to investigate the underlying morphology of rainbowfish. These images revealed nearly microscopic teeth on the exterior of the jaws, and other features associated with feeding on highly elusive prey (i.e. prey that are mobile and likely to be able to escape predation). Further examination revealed a surprisingly well developed set of pharyngeal jaws, secondary to the oral jaws. The structure of the pharyngeal jaws suggested that most of the prey processing occurred within the pharynx.
ContributorsLerma, Sarahi (Author) / Ferry, Lara A. (Thesis director) / Hackney Price, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor) / School of Social and Behavioral Sciences (Contributor)
Created2015-05
135639-Thumbnail Image.png
Description
Vitamin D, a bioactive lipid and essential nutrient, is obtained by humans through either endogenous synthesis in response to UV light exposure or via nutritional intake. Once activated to its hormonal form, vitamin D binds to and activates the nuclear vitamin D receptor (VDR). Activation of VDR is known to

Vitamin D, a bioactive lipid and essential nutrient, is obtained by humans through either endogenous synthesis in response to UV light exposure or via nutritional intake. Once activated to its hormonal form, vitamin D binds to and activates the nuclear vitamin D receptor (VDR). Activation of VDR is known to modulate gene transcription in vitamin D target tissues such as kidney, colon, and bone; however, less is known about the ability of VDR to respond to "nutritional modulators". One such potential VDR modulator is resveratrol, a plant-derived polyphenol and potent antioxidant nutrient that also functions as a chemopreventative. Resveratrol is known to activate sirtuin-1, a deacetylase enzyme with potential anti-aging properties. This study explores the potential for resveratrol, an anticancer nutraceutical, to upregulate VDR activity through its effector protein, sirtuin-1. Furthermore, due to its putative interactions with several intracellular signaling pathways, klotho has been proposed as an anti-aging protein and tumor suppressor gene, while the Wnt/β-catenin signaling pathway drives enhanced cellular proliferation leading to numerous types of cancers, especially colorectal neoplasia. Thus, the ability of klotho to cooperate with vitamin D to inhibit oncogenic β-catenin signaling was also analyzed. The experiments and resultant data presented in this thesis explore the potential role of VDR as a physiologically relevant nutritional sensor in human cells. This novel study reveals the importance of nutrient modulation of the VDR system by vitamin D and resveratrol and how this might represent a molecular mechanism that is responsible for the putative anti-cancer actions of vitamin D. Furthermore, this study enhances our understanding of how vitamin D/VDR and resveratrol interact with klotho and how this interaction affects β-catenin signaling to mitigate oncogenic growth and differentiation. This works demonstrates that the vitamin D hormone serves as a likely chemopreventive agent for various types of cancers through control of anti-oxidation and cellular proliferation pathways via its nuclear receptor. Our results also indicate the potential for resveratrol, an anticancer nutraceutical, to upregulate VDR activity through SIRT1. Furthermore, the novel data presented in this work illustrate that klotho, an anti-aging protein, cooperates with vitamin D to synergistically inhibit oncogenic β-catenin signaling. Ultimately, this study enhances our understating of the molecular pathways that underpin nutritional chemoprevention, and how modulation of these pathways via dietary intervention may lead to advances in public health strategies to eventually curb carcinogenesis.
ContributorsKhan, Zainab (Author) / Jurutka, Peter (Thesis director) / Hackney Price, Jennifer (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147530-Thumbnail Image.png
Description

Antibiotic resistance is a growing crisis across the globe. With the use of antibiotics in heathcare settings in an ever-growing population, the growth of antibiotic resistance has been named a top 10 global public health threat by the World Health Organization. Through an analysis of 6 countries; Mexico, China, the

Antibiotic resistance is a growing crisis across the globe. With the use of antibiotics in heathcare settings in an ever-growing population, the growth of antibiotic resistance has been named a top 10 global public health threat by the World Health Organization. Through an analysis of 6 countries; Mexico, China, the United States, India, Saudi Arabia, and Ethiopia, I look at the current implementation of policy and contributing factors to the use and abuse of antibiotics within the country. Through my research, I was able to find knowledge, behaviors, and a lack of enforcement to be the main contributors to the growing antibiotic crisis. Based on the evidence, I suggested three policies that focused on treatment, prevention, or economic assistance in an effort to combat the antibiotic crisis on a global scale. With socio-economic factors in mind as well as sustainability of policy, the evidence pointed in the direction of a three-pronged approach on prevention with education, policy enforcement, and a global database to minimize the growth of antibiotic resistance as well as improve public health at a global level.

ContributorsOleinik, Nicholas (Author) / Kizer, Elizabeth (Thesis director) / Acciai, Francesco (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148335-Thumbnail Image.png
Description

The following paper explores the various effects of stress on the endocrine system. Many understand that being stressed can jeopardize maintaining adequate health, but what specifically happens when humans are stressed? Why does stress affect human health? This paper delves into background information, previous research, and the depths to which

The following paper explores the various effects of stress on the endocrine system. Many understand that being stressed can jeopardize maintaining adequate health, but what specifically happens when humans are stressed? Why does stress affect human health? This paper delves into background information, previous research, and the depths to which stress negatively affects the body. The effects stress has on the endocrine system, specifically on the hypothalamic-pituitary-thyroid axis (HPT) and hypothalamic-pituitary-adrenal axis (HPA), is discussed, and additionally, at home de-stressing methods are researched. The study included a set of participants at Arizona State University. The method took place over the course of 2 weeks: one normal week, and the other with the implementation of a de-stressing method. The normal week involved the participants living their daily lives with the addition of a stress-measuring survey, while the second week involved implementing a de-stressing method and stress-measuring survey. The purpose of this study was to discover if there was a correlation between performing these relaxation activities and decreasing stress levels in ASU students. The results found that students reported they felt more relaxed and calm after the activities. Overall, this thesis provides information and first hand research on the effects of stress and stress-reducing activities and discusses the importance of maintaining lower stress levels throughout everyday life.

ContributorsGebara, Nayla F (Co-author) / Weissmann, Megan (Co-author) / Don, Rachael (Thesis director) / Irving, Andrea (Committee member) / Kizer, Elizabeth (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148359-Thumbnail Image.png
Description

The United States healthcare system does not perform as well as other countries including Germany and England, despite spending the most money on healthcare. It is well-established that there have been attempts at reform in the U.S. healthcare system multiple times in the past. This research paper describes the health

The United States healthcare system does not perform as well as other countries including Germany and England, despite spending the most money on healthcare. It is well-established that there have been attempts at reform in the U.S. healthcare system multiple times in the past. This research paper describes the health care systems in the U.S., Germany, and England to analyze the strengths to create practical healthcare reform ideas for the U.S. This was done by describing each of the country's health care systems in detail, including the history of each country's health care system, the quality of care, the access to care, and the funding of the health care system. Based on this analysis of these health care systems, recommendations for health care reform are provided for the U.S. with revisions to the Affordable Care Act.

ContributorsEppinger, Jamie Marie (Author) / Don, Rachael (Thesis director) / Kizer, Elizabeth (Committee member) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135926-Thumbnail Image.png
Description
The significance of hormonal vitamin D in the numerous facets of health stresses the importance of elucidating the molecular mechanism(s) associated with 1,25D-VDR signaling modulators (e.g., resveratrol and sirtuin-1). Resveratrol (Res), a natural antioxidant, is a potent activator of NAD-dependent deacetylase sirtuin-1 (SIRT-1), an enzyme associated with longevity in animal

The significance of hormonal vitamin D in the numerous facets of health stresses the importance of elucidating the molecular mechanism(s) associated with 1,25D-VDR signaling modulators (e.g., resveratrol and sirtuin-1). Resveratrol (Res), a natural antioxidant, is a potent activator of NAD-dependent deacetylase sirtuin-1 (SIRT-1), an enzyme associated with longevity in animal models. This present study employed mammalian 2-hybrid (M2H) and vitamin D responsive element (VDRE)-based transcriptional assays to investigate the potential effects of Res and SIRT-1 on VDR signal transduction. Results from VDRE-based assays indicate that Res and SIRT-1 potentiate 1,25D-VDR activity via cell-and-promoter-specific pathways. In addition, 1,25D displacement experiments revealed an increase in VDR-bound radiolabeled 1,25D in the presence of Res, suggesting that Res may potentiate VDR transactivation by stimulating 1,25D binding. M2H assays in HEK293 cells were then utilized to assess levels of interaction between VDR and VDR comodulators, including RXR, SRC-1, and DRIP-205. Both Res and SIRT-1 increased the ability of VDR to associate with RXR; however, SRC-1 and DRIP-205 interactions were not enhanced. The activity of a novel, non-acetylatable VDR mutant, K413R, was probed revealing that K413R possesses amplified transactivation capacity over wild-type VDR. A SIRT-1 inhibitor, EX-527, was used to suppress endogenous SIRT-1, resulting in significantly decreased VDR transactivation. Finally, qPCR results in HEK293 cells revealed that the 1,25D-mediated induction of CYP24A1, an endogenous VDR target gene, was enhanced (85%) by SIRT-1 while Res increased CYP24A1 expression by 294%. The combination of 1,25D, SIRT-1, and Res amplified CYP24A1 expression by 326% over 1,25D, although this effect did not reach statistical significance when compared to the Res only treated group. We conclude that acetylation of VDR comprises a negative feedback loop that attenuates 1,25D-VDR signaling. This loop is suppressed by resveratrol/SIRT-1-catalyzed deacetylation of VDR, restoring VDR activity. The two compounds, 1,25-dihydroxyvitamin D (1,25D, vitamin D) and 5-hydroxytryptamine (5-HT, serotonin), have been proposed to play a significant role in abnormal social behavior associated with psychological conditions including autism spectrum disorders (ASDs) and depression; however, the mechanism underlying these associations has yet to be elucidated. Deficiencies in 1,25D or 5-HT have been linked to the increased incidence of ASDs. Thus, examining the modulation of genes involved in 5-HT biosynthesis, reuptake, and degradation is fundamental in linking low 1,25D levels to the increased incidence of psychiatric disorders. We propose that 1,25D regulates tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway of 5-HT. In order to evaluate the regulation of TPH2 in neuronal cells, three formulations of media were examined to optimize the cell culture conditions necessary for growth and morphology of embryonic rat medullary raphe (B14) serotonergic neurons. Next, quantitative real time-PCR (qPCR) was utilized to examine TPH2 expression in cultured human glioblastoma (U-87) cells and rat serotonergic neurons (B-14). Human TPH2 mRNA in U-87 cells was induced dose-dependently resulting in a 2.4-fold increase at 10 nM 1,25D. Strikingly, TPH2 mRNA in B-14 cells was observed to be 26- to 86-fold upregulated at 10 nM 1,25D; however, 1 nM and 100 nM 1,25D elicited significantly smaller inductions (8-fold and 1.2-fold, respectively).
ContributorsSabir, Marya Sabah (Author) / Jurutka, Peter (Thesis director) / Hackney Price, Jennifer (Committee member) / Sandrin, Todd R. (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
131432-Thumbnail Image.png
Description
Vitamin D3 (cholecalciferol) is an essential micronutrient that plays a key role in developmental growth and lifespan in mammals. However, few studies have shown how vitamin D3 plays its vital functions in arthropods. Here, we examined the effects of full (13.3 IU/mL) and half dose (6.65 IU/mL) vitamin D3 on

Vitamin D3 (cholecalciferol) is an essential micronutrient that plays a key role in developmental growth and lifespan in mammals. However, few studies have shown how vitamin D3 plays its vital functions in arthropods. Here, we examined the effects of full (13.3 IU/mL) and half dose (6.65 IU/mL) vitamin D3 on the growth and lifespan of Drosophila melanogaster. Vitamin B12 is another micronutrient that shows decreases absorption in elderly patients and might be linked to symptoms associated with aging rather than lifespan, but again, the effects of vitamin B12 supplementation in arthropods is poorly characterized. Results showed that both full and half doses of vitamin D3 and B12 do not significantly alter the timing of pupariation or adult eclosion. Similarly, the mortality rate of adult D. melanogaster exposed to vitamin B12 or higher doses of vitamin D3 was not significantly decreased or increased. However, a low dose of vitamin D3 did significantly lower the mortality rate of D. melanogaster. The genetic composition of Drosophila for vitamin B12 and D metabolism showed similarities in humans. However, there are no biological evidences if these genes are functional thus, this may explain the results of this study.
ContributorsRebonza, Edzel May Suico (Author) / Hackney Price, Jennifer (Thesis director) / Jurutka, Peter (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131330-Thumbnail Image.png
Description
Populations in the United States and globally struggle to receive equal and affordable access to healthcare, this is no secret. However there are several minority and underprivileged groups within the population that experience disproportionate quality of healthcare when compared to their cis-gendered heterosexual counterparts.
Individuals that align and identify themselves as

Populations in the United States and globally struggle to receive equal and affordable access to healthcare, this is no secret. However there are several minority and underprivileged groups within the population that experience disproportionate quality of healthcare when compared to their cis-gendered heterosexual counterparts.
Individuals that align and identify themselves as part of the Lesbian, Gay, Bisexual, Transgender, Queer/Questioning (LGBTQ+) Community, often face discrimination and bias from within the healthcare system that prevent them from receiving adequate patient knowledge, tailored and beneficial healthcare, as well as social support when seeking treatment for conditions that may at times, be more persistent within the community. Examples of these holes within the healthcare system include a lack of culturally competent and appropriate care for those in the community, access to affordable treatments, and other unique health needs.
Consequently, as a minority group these members face social and environmental factors that contribute to their overall wellbeing and health, and therefore training and education need to be implemented for future and current healthcare providers to assess, recognize and acknowledge these varying factors and how they contribute to a patient’s overall wellbeing.
ContributorsRandell, Arianna Nicole (Author) / Kizer, Elizabeth (Thesis director) / Don, Rachael (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132244-Thumbnail Image.png
Description
Since its isolation from a rhesus monkey in the Zika forest of Uganda in 1947, Zika virus (ZIKV) has spread into many parts of the world, causing major epidemics, notably in the Americas and some parts of Europe and Asia. The flavivirus ZIKV is primarily transmitted to humans via the

Since its isolation from a rhesus monkey in the Zika forest of Uganda in 1947, Zika virus (ZIKV) has spread into many parts of the world, causing major epidemics, notably in the Americas and some parts of Europe and Asia. The flavivirus ZIKV is primarily transmitted to humans via the bite of infectious adult female Aedes mosquitoes. In the absence of effective treatment or a safe and effective vaccine against the disease, control efforts are focused on effective vector management to reduce the mosquito population and limit human exposure to mosquito bites. The work in this thesis is based on the use of a mathematical model for gaining insight into the transmission dynamics of ZIKV in a population. The model, which takes the form of a deterministic system of nonlinear differential equations, is rigorously analyzed to gain insight into its basic qualitative features. In particular, it is shown that the disease-free equilibrium of the model is locally-asymptotically stable whenever a certain epidemiological quantity (known as the reproduction number, denoted by R0) is less than unity. The epidemiological implication of this result is that a small influx of ZIKV-infected individuals or vectors into the community will not generate a large outbreak if the anti-ZIKV control strategy (or strategies) adopted by the community can reduce and maintain R0 to a value less than unity. Numerical simulations of the model, using data relevant to ZIKV transmission dynamics in Puerto Rico, shows that a control strategy that solely focuses on killing immature mosquitoes (using highly efficacious larvicides) can lead to the elimination of ZIKV if the larvicide coverage (i.e., proportion of breeding sites treated with larvicides) is high enough (over 90%). Such elimination is also feasible using a control strategy that solely focuses on the use of insect repellents (as a means of personal protection against mosquito bites) if the coverage level of the insect repellent usage in the community is high enough (at least 70%). However, it is also shown that although the use of adulticides (i.e., using insecticides to kill adult mosquitoes) can reduce the reproduction number (hence, disease burden), it fails to reduce it to a value less than unity, regardless of coverage level. Thus, unlike with the use of larvicide-only or repellent-only strategies, the population-wide implementation of an adulticide-only strategy is unable to lead to ZIKV elimination. Finally, it is shown that the combined (integrated pest management) strategy, based on using all three aforementioned strategies, is the most effective approach for combatting ZIKV in the population. In particular, it is shown that even a moderately-effective level of this strategy, which entails using only 50% coverage of both larvicides and adulticides, together with about 45% coverage for a repellent strategy, will lead to ZIKV elimination. This moderately-effective combined strategy seems attainable in Puerto Rico.
ContributorsUrcuyo, Javier (Author) / Gumel, Abba (Thesis director) / Hackney Price, Jennifer (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05