Matching Items (24)
150407-Thumbnail Image.png
Description
Acceptance of the plant group Martyniaceae as a distinct family has long been questioned. Previously placed in the family Pedaliaceae, the Martyniaceae have been allied to numerous other families within the order Lamiales. The objectives of this study include the investigation of the placement of the Martyniaceae within the order

Acceptance of the plant group Martyniaceae as a distinct family has long been questioned. Previously placed in the family Pedaliaceae, the Martyniaceae have been allied to numerous other families within the order Lamiales. The objectives of this study include the investigation of the placement of the Martyniaceae within the order Lamiales using molecular data (chloroplast DNA sequences), the further examination of the internal relationships of the Martyniaceae using an expanded nuclear and chloroplast sequences data set, and the construction of a taxonomic treatment of the family that includes all published names and taxa in the Martyniaceae. An analysis of the Lamiales using two chloroplast gene regions (ndhF and rps16) reveals that the Martyniaceae should be segregated from the family Pedaliaceae, but is not able to support the placement of any of its putatively-related families as sister to the Martyniaceae. Sequences from 151 taxa of the Lamiales are included in the analysis, including six representatives from the Martyniaceae. An analysis of the Martyniaceae using three chloroplast gene regions (psbA-trnH spacer, trnQ-5'rps16 intergenic spacer, and trnS-trnG-trnG spacer and intron) and the Internal Transcribed Spacer resolves two major clades within the Martyniaceae corresponding to the North American taxa (Martynia and Proboscidea) and the South American taxa (Craniolaria, Holoregmia, and Ibicella). Sequences from all five genera and 15 taxa were included in the analysis. Results from the molecular phylogenetic analyses are incorporated into a revised taxonomic treatment of the family. Five genera and thirteen species are recognized for the family Martyniaceae.
ContributorsGutiérrez, Raúl (Author) / Wojciechowski, Martin F (Thesis advisor) / Pigg, Kathleen B (Committee member) / Landrum, Leslie R (Committee member) / Butterworth, Charlie (Committee member) / Arizona State University (Publisher)
Created2011
149875-Thumbnail Image.png
Description
ABSTRACT The Phoenix Four Rivers Flora is an inventory of all the vascular plants growing along the Salt, Gila, New and Agua Fria Rivers, and their tributaries in the Phoenix Metropolitan Area during the years of the study (2009-2011). This floristic inventory documents the plant species and habitats

ABSTRACT The Phoenix Four Rivers Flora is an inventory of all the vascular plants growing along the Salt, Gila, New and Agua Fria Rivers, and their tributaries in the Phoenix Metropolitan Area during the years of the study (2009-2011). This floristic inventory documents the plant species and habitats that exist currently in the project area, which has changed dramatically from previous times. The data gathered by the flora project thus not only documents how the current flora has been altered by urbanization, but also will provide a baseline for future ecological studies. The Phoenix Metropolitan Area is a large urbanized region in the Sonoran Desert of Central Arizona, and its rivers are important for the region for many uses including flood control, waste water management, recreation, and gravel mining. The flora of the rivers and tributaries within the project area is extremely diverse; the heterogeneity of the systems being caused by urbanization, stream modification for flood control, gravel mining, and escaped exotic species. Hydrological changes include increased runoff in some areas because of impermeable surfaces (e.g. paved streets) and decreased runoff in other areas due to flood retention basins. The landscaping trade has introduced exotic plant species that have escaped into urban washes and riparian areas. Many of these have established with native species to form novel plant associations.
ContributorsJenke, Darin (Author) / Landrum, Leslie R. (Committee member) / Pigg, Kathleen B. (Committee member) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2011
151900-Thumbnail Image.png
Description
This dissertation research investigates both spatial and temporal aspects of Bronze Age land use and land cover in the Eastern Mediterranean using botanical macrofossils of charcoal and charred seeds as sources of proxy data. Comparisons through time and over space using seed and charcoal densities, seed to charcoal ratios, and

This dissertation research investigates both spatial and temporal aspects of Bronze Age land use and land cover in the Eastern Mediterranean using botanical macrofossils of charcoal and charred seeds as sources of proxy data. Comparisons through time and over space using seed and charcoal densities, seed to charcoal ratios, and seed and charcoal identifications provide a comprehensive view of island vs. mainland vegetative trajectories through the critical 1000 year time period from 2500 BC to 1500 BC of both climatic fluctuation and significant anthropogenic forces. This research focuses particularly on the Mediterranean island of Cyprus during this crucial interface of climatic and human impacts on the landscape. Macrobotanical data often are interpreted locally in reference to a specific site, whereas this research draws spatial comparisons between contemporaneous archaeological sites as well as temporal comparisons between non-contemporaneous sites. This larger perspective is particularly crucial on Cyprus, where field scientists commonly assume that botanical macrofossils are poorly preserved, thus unnecessarily limiting their use as an interpretive proxy. These data reveal very minor anthropogenic landscape changes on the island of Cyprus compared to those associated with contemporaneous mainland sites. These data also reveal that climatic forces influenced land use decisions on the mainland sites, and provides crucial evidence pertaining to the rise of early anthropogenic landscapes and urbanized civilization.
ContributorsKlinge, JoAnna M (Author) / Fall, Patricia L. (Thesis advisor) / Falconer, Steven E. (Committee member) / Brazel, Anthony J. (Committee member) / Pigg, Kathleen B (Committee member) / Arizona State University (Publisher)
Created2013
151026-Thumbnail Image.png
Description
This study identifies the flora of the Eagletail Mountain Region, an area covering approximately 100,600 acres, located in west-central Arizona that includes the Eagletail Mountains, Granite Mountains, portions of the Harquahala Valley, and Cemetery Ridge near Clanton Well. The region is located about 129 km (80 mi) west of Phoenix

This study identifies the flora of the Eagletail Mountain Region, an area covering approximately 100,600 acres, located in west-central Arizona that includes the Eagletail Mountains, Granite Mountains, portions of the Harquahala Valley, and Cemetery Ridge near Clanton Well. The region is located about 129 km (80 mi) west of Phoenix and 24 km (15 mi) south of Interstate 10. Plants were collected over a six-year period, beginning September, 2004 and ending May, 2010, including two wet winters and two wet summers. A total of 702 collections were made covering 292 species that represented 63 families. Additional information on the region included in the thesis are: 1) an analysis of the climate, based on 20 years of rainfall records; 2) a description of the geology and its influence on plant distribution; 3) a prehistory and history identifying archeological sites; 4) an analysis of food plants used by the Native Americans that suggests how they were able to live in the region; 5)a paleo-botanical history based on an evaluation of pack-rat midden collections from mountain ranges around the region; 6) a comparison of the trees, shrubs, and perennials of the Eagletail Mountain Region with those of the Sierra Estrella and Kofa Mountains; and 7) a survey of non-native species. The habitats that the plants occupied based on climate and soils included were: 1) the bottoms and sides of sandy/ gravelly washes, 2) bajada slopes-volcanic soils, 3) bajada slopes-granitic sandy soils, 4) slot canyons/rock outcrops, 5) desert pavement, and 6) open valleys. Each habitat has its own characteristic species composition and distribution.
ContributorsNewton, Douglas R (Author) / Landrum, Leslie (Thesis advisor) / Alcock, John (Thesis advisor) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2012
149381-Thumbnail Image.png
Description
The Juglandaceae (walnuts, hickories, pecans) has one of the best-documented fossil records in the Northern Hemisphere. The oldest modern genus, Cyclocarya, today restricted to China, first appears in the late Paleocene (57 ma) of North Dakota, USA. Unlike walnuts and pecans that produce edible fruits dispersed by mammals, Cyclocarya fruits

The Juglandaceae (walnuts, hickories, pecans) has one of the best-documented fossil records in the Northern Hemisphere. The oldest modern genus, Cyclocarya, today restricted to China, first appears in the late Paleocene (57 ma) of North Dakota, USA. Unlike walnuts and pecans that produce edible fruits dispersed by mammals, Cyclocarya fruits are small nutlets surrounded by a prominent circular wing, and are thought to be wind- or water-dispersed. The current study provides the first evidence that fossil fruits were different from modern forms in the number and organization of their attachment to reproductive branches, and in their anatomical structure. Unlike the modern genus that bears separate pistillate and staminate flowers the fossil fruits had attached pollen-bearing structures. Unisexual pollen catkins are also present, suggesting the fossil Cyclocarya may have differed from its modern relative in this feature. Like several other plants from the late Paleocene Almont/Beicegel Creek floras, Cyclocarya shows a mosaic combination of characters not seen in their modern counterparts. Fossils were collected from the field, and examined for specimens exposed on the weathered rock surface. Specimens from Almont were photographed with reflected light, while those from Beicegel Creek cut into slabs and prepared by etching the rock matrix in 49% hydrofluoric and re-embedding the exposed plant material in cellulose acetate and acetone to make "peels". Selected specimens are cut out, mounted on microscope slides, and studied with light microscopy. These fossil fruits were studied because they are the earliest fossil evidence of Cyclocarya. They are exceptionally preserved and thus provide critical structural evidence for changes in that occurred during the evolution of plants within this lineage. Because Cyclocarya fruits are winged, they might be assumed to be wind-dispersed. Their radial symmetry does not have the aerodynamic qualities typical of wind-dispersed fruits, and may have been dispersed by water.
ContributorsTaylor, Malcom DeWitt (Author) / Pigg, Kathleen B (Thesis advisor) / Wojciechowski, Martin F (Committee member) / Devore, Melanie L (Committee member) / Farmer, Jack (Committee member) / Gill, Anthony (Committee member) / Arizona State University (Publisher)
Created2010
132477-Thumbnail Image.png
Description
Urbanization has global impacts on ecosystems and transforms landscapes into man-made constructs. As urbanization continues to encroach on landscapes it is important to understand its effects on biodiversity and the long term health of our planet. In terms of species numbers, urban floras can actually be more diverse than their

Urbanization has global impacts on ecosystems and transforms landscapes into man-made constructs. As urbanization continues to encroach on landscapes it is important to understand its effects on biodiversity and the long term health of our planet. In terms of species numbers, urban floras can actually be more diverse than their native surroundings and I am specifically interested in the species that have been introduced into these settings, their provenance, and the historical circumstances of how they were established. I collected plants in the alleys of Tempe, Arizona over a 5 month period to get a baseline understanding of the local diversity; then collected data from herbarium records using SEINet http://swbiodiversity.org/seinet/ to trace the origin of the introduced species and the first record of their appearance. I also used on-line information from the City of Tempe to investigate the relationship of land use change, development, and population growth to the introductions of some non-native plants. Finally, I used SIENet records to investigate the relationship of collection intensity throughout the decades to the introductions of some non-native plants. A total of 130 specimen were collected representing 83 different species from 32 different families. Most of the introduced species were from climates similar to Arizona. New occurrence records were spread out over the decades that Tempe has been around, and I was only able to weakly link them to the historical and collection intensity data. Knowing the biodiversity of an area can give clues into the ecosystem services that biodiversity provides, as well as management implications. Additionally, knowing the history of what is out there may give insights into what the biodiversity of the future may look like.
ContributorsHauck, Chad Steven (Author) / Franz, Nico (Thesis director) / Makings, Elizabeth (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
This project is a revised taxonomic treatment of the tobacco genus, Nicotiana, for the Arizona Flora. The treatment required morphological descriptions of all six species found in Arizona based on measurements and observations from mounted herbarium specimen as well as field collections. Loans from regional herbaria including: Northern Arizona University,

This project is a revised taxonomic treatment of the tobacco genus, Nicotiana, for the Arizona Flora. The treatment required morphological descriptions of all six species found in Arizona based on measurements and observations from mounted herbarium specimen as well as field collections. Loans from regional herbaria including: Northern Arizona University, Arizona State University, the University of Arizona, Rancho Santa Anna Herbarium, and the Desert Botanical Garden were examined and annotated according to standard herbaria protocols. A dichotomous key was then created based on morphological descriptions for use in identifying species both in the field and from herbarium mounts. Distribution maps were generated using online databases of herbarium vouchers, mapping soft wares, and field excursions. During the course of my field work, I was able to locate all six species and four of them were collected, vouchered, and deposited in the ASU Vascular Plant Herbarium. One species, Nicotiana quadrivalvis was not relocated based on historical records. This treatment will contribute to ongoing revisions of the Arizona Flora via a publication in the regional taxonomic journal Canotia.
ContributorsSolves, Jean-Phillippe Yvan (Author) / Pigg, Kathleen (Thesis director) / Makings, Elizabeth (Committee member) / Doan, Shannon (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
163999-Thumbnail Image.png
Description
In the Spring of 2021, I had an internship with Butterfly Wonderland, where I worked in their conservatory and learned about the ecological relationship between butterflies and plants. As part of my internship, I encouraged guests to learn more about gardening for pollinators. That experience inspired me to complete a

In the Spring of 2021, I had an internship with Butterfly Wonderland, where I worked in their conservatory and learned about the ecological relationship between butterflies and plants. As part of my internship, I encouraged guests to learn more about gardening for pollinators. That experience inspired me to complete a creative project in which I would design a butterfly garden of my own that would highlight wildlife benefits and be accessible to people like myself, who do not have their own gardens and don’t have hundreds of dollars to spend on gardening supplies. In collaboration with Dr. Gwen Iacona and Liz Makings (director and second committee member respectively), I planted accessible gardens. By “accessible”, I mean that the gardens were affordable (less than $100 total), included free/upcycled materials wherever possible, and are easily replicable. For my project, I made ‘prototypes’ of the gardens by using freely available seeds and soil sources, germinating those seeds in the ASU Greenhouses, and documenting my process so that it could be shared. Freely available seeds and other materials came from a variety of places including the ASU seed library, local Free Little Libraries, donations, as well as purchases from on campus fundraisers. The germination and growth of seeds in the ASU greenhouse took place over the course of several months in the fall and winter. That documentation has taken on several forms, including an informational pamphlet about wildlife gardening and flyers specific to locally available plant seeds. I find this to be very important because my end goal was to create something that other students or people in our community can use in a practical way. I wanted to create something that will bring gardening into the homes of people who didn’t think they were able to participate in it.
ContributorsBernat, Isabella (Author) / Iacona, Gwen (Thesis director) / Makings, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2022-05
168820-Thumbnail Image.png
Description
Bouteloua eriopoda (Torr.) Torr., also known as black grama, is a perennial bunchgrass native to arid and semiarid ecosystems in the southwestern region of North America. As a result of anthropogenic climate change, this region is predicted to increase in aridity and experience more frequent extreme drought and extreme wet

Bouteloua eriopoda (Torr.) Torr., also known as black grama, is a perennial bunchgrass native to arid and semiarid ecosystems in the southwestern region of North America. As a result of anthropogenic climate change, this region is predicted to increase in aridity and experience more frequent extreme drought and extreme wet years. This change in precipitation will no doubt affect black grama; however, few studies have investigated how the specific structural components of this grass will respond. The purpose of this study was to examine the effects of years since start of treatment and annual precipitation amount on tiller and stolon densities, and to test for interaction between the two predictor variables. Additionally, the effects of annual precipitation on ramets and axillary buds were investigated. By using 36 experimental plots that have been receiving drought, irrigated, or control treatments since 2007, tiller density was the most responsive component to both annual precipitation amount and years since start of treatment. Years since start of treatment and annual precipitation amount also had a statistically significant interaction, meaning the effect of precipitation amount on tiller density differs depending on how many years have passed since treatments began. Stolon density was the second-most responsive component; the predictor variables were found to have no statistically significant interaction, meaning their effects on stolon density are independent of one another. Ramet density, ramets per stolon, and axillary bud metabolic activity and density were found to be independent of annual precipitation amount for 2021. The results indicate that multiple-year extreme wet and multiple-year extreme dry conditions in the Southwest will both likely reduce tiller and stolon densities in black grama patches. Prolonged drought conditions reduced tiller and stolon production in black grama because of negative legacies from previous years. Reduced production during prolonged wet conditions could be due to increased competition between adjacent plants.
ContributorsSutter, Bryce Madison (Author) / Sala, Osvaldo E (Thesis advisor) / Makings, Elizabeth (Committee member) / Wojciechowski, Martin F (Committee member) / Arizona State University (Publisher)
Created2022
171615-Thumbnail Image.png
Description
The nests of the Curve-billed Thrasher (Toxostoma curvirostre) were studied across the greater Phoenix area from 2020-2022 in order to assess any significant relationships between their composition and the composition of their environment. Nests were collected and measured, and the vegetation was surveyed to 100 m for potential nest material

The nests of the Curve-billed Thrasher (Toxostoma curvirostre) were studied across the greater Phoenix area from 2020-2022 in order to assess any significant relationships between their composition and the composition of their environment. Nests were collected and measured, and the vegetation was surveyed to 100 m for potential nest material type. In the lab, nests were separated by material type and tallied. The dense cores of the nests received a 100-piece sampling, with the first hundred pieces plucked from the structure, sorted by type, and massed. Ordinary least squares (OLS) and binomial regression analyses were performed on the body tallies and their corresponding site tallies. Core material weights and their corresponding site tallies only received OLS regression analyses. Beta regression analyses were also performed on the mass proportions of core samples and their corresponding environmental tallies. OLS regression yielded a significant relationship between the spiny body material tally and its site tallies at 25 and 100 m. While failing the assumption of normality, the tally of barrel cactus in a nest body yielded significant p-values in OLS and binomial regression, as well as the Spearman’s correlation test, supporting a strong correlation with the 100m site tally. The tally of anthropogenic materials and the distance to the nearest man-made structure failed the test of normality, but yielded significant p-values in binomial regression and the Spearman’s correlation test. OLS regression of log anthropogenic tally and log distance to nearest structure failed normality but yielded a significant p-value as well. In beta regression analyses, only the spiny core mass proportion yielded a significant relationship at the 100 m site tally.
ContributorsMotta, Anthony Joseph (Author) / Taylor, Jay (Thesis advisor) / Makings, Elizabeth (Committee member) / Puente, Raul (Committee member) / Arizona State University (Publisher)
Created2022