Matching Items (11,941)
Filtering by

Clear all filters

152093-Thumbnail Image.png
Description
Irrigation agriculture has been heralded as the solution to feeding the world's growing population. To this end, irrigation agriculture is both extensifying and intensifying in arid regions across the world in an effort to create highly productive agricultural systems. Over one third of modern irrigated fields, however, show signs of

Irrigation agriculture has been heralded as the solution to feeding the world's growing population. To this end, irrigation agriculture is both extensifying and intensifying in arid regions across the world in an effort to create highly productive agricultural systems. Over one third of modern irrigated fields, however, show signs of serious soil degradation, including salinization and waterlogging, which threaten the productivity of these fields and the world's food supply. Surprisingly, little ecological data on agricultural soils have been collected to understand and address these problems. How, then, can expanding and intensifying modern irrigation systems remain agriculturally productive for the long-term? Archaeological case studies can provide critical insight into how irrigated agricultural systems may be sustainable for hundreds, if not thousands, of years. Irrigation systems in Mesopotamia, for example, have been cited consistently as a cautionary tale of the relationship between mismanaged irrigation systems and the collapse of civilizations, but little data expressly link how and why irrigation failed in the past. This dissertation presents much needed ecological data from two different regions of the world - the Phoenix Basin in southern Arizona and the Pampa de Chaparrí on the north coast of Peru - to explore how agricultural soils were affected by long-term irrigation in a variety of social and economic contexts, including the longevity and intensification of irrigation agriculture. Data from soils in prehispanic and historic agricultural fields indicate that despite long-lived and intensive irrigation farming, farmers in both regions created strategies to sustain large populations with irrigation agriculture for hundreds of years. In the Phoenix Basin, Hohokam and O'odham farmers relied on sedimentation from irrigation water to add necessary fine sediments and nutrients to otherwise poor desert soils. Similarly, on the Pampa, farmers relied on sedimentation in localized contexts, but also constructed fields with ridges and furrows to draw detrimental salts away from planting surfaces in the furrows on onto the ridges. These case studies are then compared to failing modern and ancient irrigated systems across the world to understand how the centralization of management may affect the long-term sustainability of irrigation agriculture.
ContributorsStrawhacker, Colleen (Author) / Spielmann, Katherine A. (Thesis advisor) / Hall, Sharon J (Committee member) / Nelson, Margaret C. (Committee member) / Sandor, Jonathan A (Committee member) / Arizona State University (Publisher)
Created2013
152261-Thumbnail Image.png
Description
Human activity has increased loading of reactive nitrogen (N) in the environment, with important and often deleterious impacts on biodiversity, climate, and human health. Since the fate of N in the ecosystem is mainly controlled by microorganisms, understanding the factors that shape microbial communities becomes relevant and urgent. In arid

Human activity has increased loading of reactive nitrogen (N) in the environment, with important and often deleterious impacts on biodiversity, climate, and human health. Since the fate of N in the ecosystem is mainly controlled by microorganisms, understanding the factors that shape microbial communities becomes relevant and urgent. In arid land soils, these microbial communities and factors are not well understood. I aimed to study the role of N cycling microbes, such as the ammonia-oxidizing bacteria (AOB), the recently discovered ammonia-oxidizing archaea (AOA), and various fungal groups, in soils of arid lands. I also tested if niche differentiation among microbial populations is a driver of differential biogeochemical outcomes. I found that N cycling microbial communities in arid lands are structured by environmental factors to a stronger degree than what is generally observed in mesic systems. For example, in biological soil crusts, temperature selected for AOA in warmer deserts and for AOB in colder deserts. Land-use change also affects niche differentiation, with fungi being the major agents of N2O production in natural arid lands, whereas emissions could be attributed to bacteria in mesic urban lawns. By contrast, NO3- production in the native desert and managed soils was mainly controlled by autotrophic microbes (i.e., AOB and AOA) rather than by heterotrophic fungi. I could also determine that AOA surprisingly responded positively to inorganic N availability in both short (one month) and long-term (seven years) experimental manipulations in an arid land soil, while environmental N enrichment in other ecosystem types is known to favor AOB over AOA. This work improves our predictions of ecosystem response to anthropogenic N increase and shows that paradigms derived from mesic systems are not always applicable to arid lands. My dissertation also highlights the unique ecology of ammonia oxidizers and draws attention to the importance of N cycling in desert soils.
ContributorsMarusenko, Yevgeniy (Author) / Hall, Sharon J (Thesis advisor) / Garcia-Pichel, Ferran (Thesis advisor) / Mclain, Jean E (Committee member) / Schwartz, Egbert (Committee member) / Arizona State University (Publisher)
Created2013
152591-Thumbnail Image.png
Description
The explicit role of soil organisms in shaping soil health, rates of pedogenesis, and resistance to erosion has only just recently begun to be explored in the last century. However, much of the research regarding soil biota and soil processes is centered on maintaining soil fertility (e.g., plant nutrient availability)

The explicit role of soil organisms in shaping soil health, rates of pedogenesis, and resistance to erosion has only just recently begun to be explored in the last century. However, much of the research regarding soil biota and soil processes is centered on maintaining soil fertility (e.g., plant nutrient availability) and soil structure in mesic- and agro- ecosystems. Despite the empirical and theoretical strides made in soil ecology over the last few decades, questions regarding ecosystem function and soil processes remain, especially for arid areas. Arid areas have unique ecosystem biogeochemistry, decomposition processes, and soil microbial responses to moisture inputs that deviate from predictions derived using data generated in more mesic systems. For example, current paradigm predicts that soil microbes will respond positively to increasing moisture inputs in a water-limited environment, yet data collected in arid regions are not congruent with this hypothesis. The influence of abiotic factors on litter decomposition rates (e.g., photodegradation), litter quality and availability, soil moisture pulse size, and resulting feedbacks on detrital food web structure must be explicitly considered for advancing our understanding of arid land ecology. However, empirical data coupling arid belowground food webs and ecosystem processes are lacking. My dissertation explores the resource controls (soil organic matter and soil moisture) on food web network structure, size, and presence/absence of expected belowground trophic groups across a variety of sites in Arizona.
ContributorsWyant, Karl Arthur (Author) / Sabo, John L (Thesis advisor) / Elser, James J (Committee member) / Childers, Daniel L. (Committee member) / Hall, Sharon J (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2014
152972-Thumbnail Image.png
Description

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used highly managed residential yards, which compose nearly half of the heterogeneous urban land area, as a model system to examine the ecological effects of people's management choices and the social drivers of those decisions. I found that a complex set of individual and institutional social characteristics drives people's decisions, which in turn affect ecological structure and function across scales from yards to cities. This work demonstrates the link between individuals' decision-making and ecosystem service provisioning in highly managed urban ecosystems.

Second, I examined the distribution of urban-generated air pollutants and their complex ecological outcomes in protected native ecosystems. Atmospheric carbon dioxide (CO2), reactive nitrogen (N), and ozone (O3) are elevated near human activities and act as both resources and stressors to primary producers, but little is known about their co-occurring distribution or combined impacts on ecosystems. I investigated the urban "ecological airshed," including the spatial and temporal extent of N deposition, as well as CO2 and O3 concentrations in native preserves in Phoenix, Arizona and the outlying Sonoran Desert. I found elevated concentrations of ecologically relevant pollutants co-occur in both urban and remote native lands at levels that are likely to affect ecosystem structure and function. Finally, I tested the combined effects of CO2, N, and O3 on the dominant native and non-native herbaceous desert species in a multi-factor dose-response greenhouse experiment. Under current and predicted future air quality conditions, the non-native species (Schismus arabicus) had net positive growth despite physiological stress under high O3 concentrations. In contrast, the native species (Pectocarya recurvata) was more sensitive to O3 and, unlike the non-native species, did not benefit from the protective role of CO2. These results highlight the vulnerability of native ecosystems to current and future air pollution over the long term. Together, my research provides empirical evidence for future policies addressing multiple stressors in urban managed and native landscapes.

ContributorsMiessner Cook, Elizabeth (Author) / Hall, Sharon J (Thesis advisor) / Boone, Christopher G (Committee member) / Collins, Scott L. (Committee member) / Grimm, Nancy (Committee member) / Arizona State University (Publisher)
Created2014
153405-Thumbnail Image.png
Description
Despite the breadth of studies investigating ecosystem development, an underlying theory guiding this process remains elusive. Several principles have been proposed to explain ecosystem development, though few have garnered broad support in the literature. I used boreal wetland soils as a study system to test a notable goal oriented principle:

Despite the breadth of studies investigating ecosystem development, an underlying theory guiding this process remains elusive. Several principles have been proposed to explain ecosystem development, though few have garnered broad support in the literature. I used boreal wetland soils as a study system to test a notable goal oriented principle: The Maximum Power Principle (MPP). The MPP posits that ecosystems, and in fact all energy systems, develop to maximize power production or the rate of energy production. I conducted theoretical and empirical investigations to test the MPP in northern wetlands.

Permafrost degradation is leading to rapid wetland formation in northern peatland ecosystems, altering the role of these ecosystems in the global carbon cycle. I reviewed the literature on the history of the MPP theory, including tracing its origins to The Second Law of Thermodynamics. To empirically test the MPP, I collected soils along a gradient of ecosystem development and: 1) quantified the rate of adenosine triphosphate (ATP) production--literally cellular energy--to test the MPP; 2) quantified greenhouse gas production (CO2, CH4, and N2O) and microbial genes that produce enzymes catalyzing greenhouse gas production, and; 3) sequenced the 16s rRNA gene from soil microbes to investigate microbial community composition across the chronosequence of wetland development. My results suggested that the MPP and other related theoretical constructs have strong potential to further inform our understanding of ecosystem development. Soil system power (ATP) decreased temporarily as the ecosystem reorganized after disturbance to rates of power production that approached pre-disturbance levels. Rates of CH4 and N2O production were higher at the newly formed bog and microbial genes involved with greenhouse gas production were strongly related to the amount of greenhouse gas produced. DNA sequencing results showed that across the chronosequence of development, the two relatively mature ecosystems--the peatland forest ecosystem prior to permafrost degradation and the oldest bog--were more similar to one another than to the intermediate, less mature bog. Collectively, my results suggest that ecosystem age, rather than ecosystem state, was a more important driver for ecosystem structure and function.
ContributorsChapman, Eric (Author) / Childers, Daniel L. (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Hall, Sharon J (Committee member) / Turetsky, Merritt (Committee member) / Arizona State University (Publisher)
Created2015
149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149092-Thumbnail Image.png
Description

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus and results are distributed virtually to all patients via the Health Services patient portal. The following is a literature review on past implementations of various process improvement techniques and how they can be applied to the ABCTL testing process to achieve laboratory goals. (abstract)

ContributorsKrell, Abby Elizabeth (Co-author) / Bruner, Ashley (Co-author) / Ramesh, Frankincense (Co-author) / Lewis, Gabriel (Co-author) / Barwey, Ishna (Co-author) / Myers, Jack (Co-author) / Hymer, William (Co-author) / Reagan, Sage (Co-author) / Compton, Carolyn (Thesis director) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
133340-Thumbnail Image.png
Description
For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today,

For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today, innovations and technological advancements are happening at a pace like never seen before, and technology like automation and artificial intelligence are poised to once again fundamentally alter the way people live and work in society. Whether society is prepared or not, robots are coming to replace human labor, and they are coming fast. In many areas artificial intelligence has disrupted entire industries of the economy. As people continue to make advancements in artificial intelligence, more industries will be disturbed, more jobs will be lost, and entirely new industries and professions will be created in their wake. The future of the economy and society will be determined by how humans adapt to the rapid innovations that are taking place every single day. In this paper I will examine the extent to which automation will take the place of human labor in the future, project the potential effect of automation to future unemployment, and what individuals and society will need to do to adapt to keep pace with rapidly advancing technology. I will also look at the history of automation in the economy. For centuries humans have been advancing technology to make their everyday work more productive and efficient, and for centuries this has forced humans to adapt to the modern technology through things like training and education. The thesis will additionally examine the ways in which the U.S. education system will have to adapt to meet the demands of the advancing economy, and how job retraining programs must be modernized to prepare workers for the changing economy.
ContributorsCunningham, Reed P. (Author) / DeSerpa, Allan (Thesis director) / Haglin, Brett (Committee member) / School of International Letters and Cultures (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133341-Thumbnail Image.png
Description
Businesses stand to face many uncertainties from the moment they start up to every moment in between. A business can try to recognize them and plan ahead, react to them as they occur, or be rocked by a black swan they never saw coming. How a business deals with unforeseen

Businesses stand to face many uncertainties from the moment they start up to every moment in between. A business can try to recognize them and plan ahead, react to them as they occur, or be rocked by a black swan they never saw coming. How a business deals with unforeseen events can increase its potential for success or failure. With this in mind, there is no better bridge between the here and now and the future than planning for change in order to move a company toward preparing for change, adapting to change and achieving optimal results. Interested in taking a step toward the digital age, Alpha Homes Management, Inc. (Alpha Homes) sought our help to explore ideas and options to take their company to a new level. This Barrett Creative Project was centered on designing a system for Alpha Homes that will replace their outdated paper-based system with a more digital one. This aligns with the project also featured as a capstone project as required by the information technology degree expectations. In supplement to the capstone, and for the Barrett Creative Project, the final product was presented to the owners of Alpha Homes Management, Inc. to be utilized by the business. The end goal is to provide a platform which provides a paperless environment for documentation and bring the company a step closer to having a robust internet presence. Now that the web-based application product has been created and presented, the testing phase can now begin to evaluate its efficacy.
ContributorsBrice-Nash, Tristan (Co-author) / Alfawzan, Mohammad (Co-author) / Doheny, Damien (Thesis director) / Rodriguez, Carlos (Committee member) / Information Technology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133342-Thumbnail Image.png
Description
An ethical dilemma is not a matter of “right” versus “wrong,” but rather it is a situation of conflicting values. A common ethical dilemma is that of honesty versus loyalty—is it better to tell the truth, or remain loyal to the company? In the Japanese culture, truth is

An ethical dilemma is not a matter of “right” versus “wrong,” but rather it is a situation of conflicting values. A common ethical dilemma is that of honesty versus loyalty—is it better to tell the truth, or remain loyal to the company? In the Japanese culture, truth is circumstantial and can vary with different situations. In a way, the Japanese idea of honesty reflects how highly they value loyalty. This overlap of values results in the lack of an ethical dilemma for the Japanese, which creates a new risk for fraud. Without this struggle, a Japanese employee does not have strong justification against committing fraud if it aligns with his values of honesty and loyalty.
This paper looks at the Japanese values relating to honesty and loyalty to show how much these ideas overlap. The lack of a conflict of values creates a risk for fraud, which will be shown through an analysis of the scandals of two Japanese companies, Toshiba and Olympus. These scandals shine light on the complexity of the ethical dilemma for the Japanese employees; since their sense of circumstantial honesty encourages them to lie if it maintains the harmony of the group, there is little stopping them from committing the fraud that their superiors asked them to commit.
In a global economy, understanding the ways that values impact business and decisions is important for both interacting with others and anticipating potential conflicts, including those that may result in or indicate potential red flags for fraud.
ContributorsTabar, Kelly Ann (Author) / Samuelson, Melissa (Thesis director) / Goldman, Alan (Committee member) / WPC Graduate Programs (Contributor) / W.P. Carey School of Business (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05