Matching Items (40)
153076-Thumbnail Image.png
Description
Nitrate, a widespread contaminant in surface water, can cause eutrophication and toxicity to aquatic organisms. To augment the nitrate-removal capacity of constructed wetlands, I applied the H2-based Membrane Biofilm Reactor (MBfR) in a novel configuration called the in situ MBfR (isMBfR). The goal of my thesis is to

Nitrate, a widespread contaminant in surface water, can cause eutrophication and toxicity to aquatic organisms. To augment the nitrate-removal capacity of constructed wetlands, I applied the H2-based Membrane Biofilm Reactor (MBfR) in a novel configuration called the in situ MBfR (isMBfR). The goal of my thesis is to evaluate and model the nitrate removal performance for a bench-scale isMBfR system.

I operated the bench-scale isMBfR system in 7 different conditions to evaluate its nitrate-removal performance. When I supplied H2 with the isMBfR (stages 1 - 6), I observed at least 70% nitrate removal, and almost all of the denitrification occurred in the "MBfR zone." When I stopped the H2 supply in stage 7, the nitrate-removal percentage immediately dropped from 92% (stage 6) to 11% (stage 7). Denitrification raised the pH of the bulk liquid to ~ 9.0 for the first 6 stages, but the high pH did not impair the performance of the denitrifiers. Microbial community analyses indicated that DB were the dominant bacteria in the "MBfR zone," while photosynthetic Cyanobacteria were dominant in the "photo-zone".

I derived stoichiometric relationships among COD, alkalinity, H2, Dissolved Oxygen (DO), and nitrate to model the nitrate removal capacity of the "MBfR zone." The stoichiometric relationships corresponded well to the nitrate-removal capacity for all stages expect stage 3, which was limited by the abundance of Denitrifying Bacteria (DB) so that the H2 supply capacity could not be completely used.

Finally, I analyzed two case studies for the real-world application of the isMBfR to constructed wetlands. Based on the characteristics for the wetlands and the stoichiometric relationships, I designed a feasible operation condition (membrane area and H2 pressure) for each wetland. In both cases, the amount of isMBfR surface area was modest, from 0.022 to 1.2 m2/m3 of wetland volume.
ContributorsLi, Yizhou (Author) / Rittmann, Bruce (Thesis advisor) / Vivoni, Enrique (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2014
153024-Thumbnail Image.png
Description
Sedimentary basins are defined by extensional tectonics. Rugged mountain ranges stand in stark relief adjacent to muted structural basins filled with sediment. In simplest terms, this topography is the result of ranges uplifted along normal faults, and this uplift drives erosion within upland drainages, shedding sediment into subsiding basins. In

Sedimentary basins are defined by extensional tectonics. Rugged mountain ranges stand in stark relief adjacent to muted structural basins filled with sediment. In simplest terms, this topography is the result of ranges uplifted along normal faults, and this uplift drives erosion within upland drainages, shedding sediment into subsiding basins. In southeastern Arizona's Basin and Range province extensional tectonics waned at approximately 3-5 Myr, and the region's structural basins began transitioning from internal to external drainage, forming the modern Gila River fluvial network. In the Atacama Desert of northern Chile, some basins of the Central Depression remain internally drained while others have integrated to the Pacific Ocean. In northern Chile, rates of landscape evolution are some of the slowest on Earth due to the region's hyperarid climate. While the magnitude of upland erosion driven by extensional tectonics is largely recorded in the stratigraphy of the structural basins, the landscape's response to post-tectonic forcings is unknown.

I employ the full suite of modern geomorphic tools provided by terrestrial cosmogenic nuclides - surface exposure dating, conventional burial dating, isochron burial dating, quantifying millennial-scale upland erosion rates using detrital TCN, quantifying paleo-erosion rates using multiple TCN such as Ne-21/Be-10 and Al-26l/Be-10, and assessing sediment recycling and complex exposure using multiple TCN - to quantify the rates of landscape evolution in southeastern Arizona and northern Chile during the Late Cenozoic. In Arizona, I also use modern remnants of the pre-incision landscape and digital terrain analyses to reconstruct the landscape, allowing the quantification of incision and erosion rates that supplement detrital TCN-derived erosion rates. A new chronology for key basin high stand remnants (Frye Mesa) and a flight of Gila River terraces in Safford basin provides a record of incision rates from the Pliocene through the Quaternary, and I assess how significantly regional incision is driving erosion rates. Paired nuclide analyses in the Atacama Desert of northern Chile reveal complex exposure histories resulting from several rounds of transport and burial by fluvial systems. These results support a growing understanding that geomorphic processes in the Atacama Desert are more active than previously thought despite the region's hyperarid climate.
ContributorsJungers, Matthew Cross (Author) / Heimsath, Arjun M (Thesis advisor) / Whipple, Kelin (Committee member) / Arrowsmith, Ramon (Committee member) / Vivoni, Enrique (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2014
153114-Thumbnail Image.png
Description
Sustainability requires developing the capacity to manage difficult tradeoffs to advance human livelihoods now and in the future. Decision-makers are recognizing the ecosystem services approach as a useful framework for evaluating tradeoffs associated with environmental change to advance decision-making towards holistic solutions. In this dissertation I conduct an ecosystem services

Sustainability requires developing the capacity to manage difficult tradeoffs to advance human livelihoods now and in the future. Decision-makers are recognizing the ecosystem services approach as a useful framework for evaluating tradeoffs associated with environmental change to advance decision-making towards holistic solutions. In this dissertation I conduct an ecosystem services assessment on the Yongding River Ecological Corridor in Beijing, China. I developed a `10-step approach' to evaluate multiple ecosystem services for public policy. I use the 10-step approach to evaluate five ecosystem services for management from the Yongding Corridor. The Beijing government created lakes and wetlands for five services (human benefits): (1) water storage (groundwater recharge), (2) local climate regulation (cooling), (3) water purification (water quality), (4) dust control (air quality), and (5) landscape aesthetics (leisure, recreation, and economic development).

The Yongding Corridor is meeting the final ecosystem service levels for landscape aesthetics, but the new ecosystems are falling short on meeting final ecosystem service levels for water storage, local climate regulation, water purification, and dust control. I used biophysical models (process-based and empirically-based), field data (biophysical and visitor surveys), and government datasets to create ecological production functions (i.e., regression models). I used the ecological production functions to evaluate how marginal changes in the ecosystems could impact final ecosystem service outcomes. I evaluate potential tradeoffs considering stakeholder needs to recommend synergistic actions for addressing priorities while reducing service shortfalls.
ContributorsWong, Christina P (Author) / Kinzig, Ann P (Thesis advisor) / Lee, Kai N. (Committee member) / Muneepeerakul, Rachata (Committee member) / Ouyang, Zhiyun (Committee member) / Vivoni, Enrique (Committee member) / Arizona State University (Publisher)
Created2014
156248-Thumbnail Image.png
Description
The Colorado River Basin (CRB) is the primary source of water in the

southwestern United States. A key step to reduce the uncertainty of future streamflow

projections in the CRB is to evaluate the performance of historical simulations of General

Circulation Models (GCMs). In this study, this challenge is addressed by evaluating the

ability

The Colorado River Basin (CRB) is the primary source of water in the

southwestern United States. A key step to reduce the uncertainty of future streamflow

projections in the CRB is to evaluate the performance of historical simulations of General

Circulation Models (GCMs). In this study, this challenge is addressed by evaluating the

ability of nineteen GCMs from the Coupled Model Intercomparison Project Phase Five

(CMIP5) and four nested Regional Climate Models (RCMs) in reproducing the statistical

properties of the hydrologic cycle and temperature in the CRB. To capture the transition

from snow-dominated to semiarid regions, analyses are conducted by spatially averaging

the climate variables in four nested sub-basins. Most models overestimate the mean

annual precipitation (P) and underestimate the mean annual temperature (T) at all

locations. While a group of models capture the mean annual runoff at all sub-basins with

different strengths of the hydrological cycle, another set of models overestimate the mean

annual runoff, due to a weak cycle in the evaporation channel. An abrupt increase in the

mean annual T in observed and most of the simulated time series (~0.8 °C) is detected at

all locations despite the lack of any statistically significant monotonic trends for both P

and T. While all models simulate the seasonality of T quite well, the phasing of the

seasonal cycle of P is fairly reproduced in just the upper, snow-dominated sub-basin.

Model performances degrade in the larger sub-basins that include semiarid areas, because

several GCMs are not able to capture the effect of the North American monsoon. Finally,

the relative performances of the climate models in reproducing the climatologies of P and

T are quantified to support future impact studies in the basin.
ContributorsGautam, Jenita (Author) / Mascaro, Giuseppe (Thesis advisor) / Vivoni, Enrique (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2018
158362-Thumbnail Image.png
Description
The National Oceanic and Atmospheric Administration (NOAA)’s National Water Model (NWM) will provide the next generation of operational streamflow forecasts at different lead times across United States using the Weather Research and Forecasting (WRF)-Hydro hydrologic system. These forecasts are crucial for flood protection agencies and water utilities, including the Salt

The National Oceanic and Atmospheric Administration (NOAA)’s National Water Model (NWM) will provide the next generation of operational streamflow forecasts at different lead times across United States using the Weather Research and Forecasting (WRF)-Hydro hydrologic system. These forecasts are crucial for flood protection agencies and water utilities, including the Salt River Project (SRP). The main goal of this study is to calibrate WRF-Hydro in the Oak Creek Basin (OCB; ~820 km2), an unregulated mountain sub-watershed of the Salt and Verde River basins in Central Arizona, whose water resources are managed by SRP and crucial for the Phoenix Metropolitan area. As in the NWM, WRF-Hydro was set up at 1-km (250-m) resolution for the computation of the rainfall-runoff (routing) processes. Model forcings were obtained by bias correcting meteorological data from the North American Land Data Assimilation System-2 (NLDAS-2). A manual calibration approach was designed that targets, in sequence, the sets of model parameters controlling four main processes responsible for streamflow and flood generation in the OCB. After a first calibration effort, it was found that WRF-Hydro is able to simulate runoff generated after snowmelt and baseflow, as well as magnitude and timing of flood peaks due to winter storms. However, the model underestimates the magnitude of flood peaks caused by summer thunderstorms, likely because these storms are not captured by NLDAS-2. To circumvent this, a seasonal modification of soil parameters was adopted. When doing so, acceptable model performances were obtained during calibration (2008-2011) and validation (2012-2017) periods (NSE > 0.62 and RMSE = ~2.5 m3/s at the daily time scale).

The process-based calibration strategy utilized in this work provides a new approach to identify areas of structural improvement for WRF-Hydro and the NWM.
ContributorsHussein, Abdinur Jirow (Author) / Mascaro, Giuseppe (Thesis advisor) / Vivoni, Enrique (Thesis advisor) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2020
129415-Thumbnail Image.png
Description

High-resolution characterizations and predictions are a grand challenge for ecohydrology. Recent advances in flight control, robotics and miniaturized sensors using unmanned aerial vehicles (UAVs) provide an unprecedented opportunity for characterizing, monitoring and modeling ecohydrologic systems at high-resolution (<1 m) over a range of scales. How can the ecologic and hydrologic

High-resolution characterizations and predictions are a grand challenge for ecohydrology. Recent advances in flight control, robotics and miniaturized sensors using unmanned aerial vehicles (UAVs) provide an unprecedented opportunity for characterizing, monitoring and modeling ecohydrologic systems at high-resolution (<1 m) over a range of scales. How can the ecologic and hydrologic communities most effectively use UAVs for advancing the state of the art? This Innovative Viewpoints paper introduces the utility of two classes of UAVs for ecohydrologic investigations in two semiarid rangelands of the southwestern U.S. through two useful examples. We discuss the UAV deployments, the derived image, terrain and vegetation products and their usefulness for ecohydrologic studies at two different scales. Within a land-atmosphere interaction study, we utilize high-resolution imagery products from a rotary-wing UAV to characterize an eddy covariance footprint and scale up environmental sensor network observations to match the time-varying sampling area. Subsequently, in a surface and subsurface interaction study within a small watershed, we demonstrate the use of a fixed-wing UAV to characterize the spatial distribution of terrain attributes and vegetation conditions which serve as input to a distributed ecohydrologic model whose predictions compared well with an environmental sensor network. We also point to several challenges in performing ecohydrology with UAVs with the intent of promoting this new self-service (do-it-yourself) model for high-resolution image acquisition over many scales. We believe unmanned aerial vehicles can fundamentally change how ecohydrologic science is conducted and offer ways to merge remote sensing, environmental sensor networks and numerical models.

ContributorsVivoni, Enrique (Author) / Rango, Albert (Author) / Anderson, Cody (Author) / Templeton, Nicole (Author) / Schreiner-McGraw, Adam (Author) / Saripalli, Srikanth (Author) / Laliberte, Andrea S. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-10-01
129153-Thumbnail Image.png
Description

Potential climate change impacts on summer precipitation and subsequent hydrologic responses in the southwestern U.S. are poorly constrained at present due to a lack of studies accounting for high resolution processes. In this investigation, we apply a distributed hydrologic model to the Beaver Creek watershed of central Arizona to explore

Potential climate change impacts on summer precipitation and subsequent hydrologic responses in the southwestern U.S. are poorly constrained at present due to a lack of studies accounting for high resolution processes. In this investigation, we apply a distributed hydrologic model to the Beaver Creek watershed of central Arizona to explore its utility for climate change assessments. Manual model calibration and model validation were performed using radar-based precipitation data during three summers and compared to two alternative meteorological products to illustrate the sensitivity of the streamflow response. Using the calibrated and validated model, we investigated the watershed response during historical (1990–2000) and future (2031–2040) summer projections derived from a single realization of a mesoscale model forced with boundary conditions from a general circulation model under a high emissions scenario. Results indicate spatially-averaged changes across the two projections: an increase in air temperature of 1.2 °C, a 2.4-fold increase in precipitation amount and a 3-fold increase in variability, and a 3.1-fold increase in streamflow amount and a 5.1-fold increase in variability. Nevertheless, relatively minor changes were obtained in spatially-averaged evapotranspiration. To explain this, we used the simulated hydroclimatological mechanisms to identify that higher precipitation limits radiation through cloud cover leading to lower evapotranspiration in regions with orographic effects. This challenges conventional wisdom on evapotranspiration trends and suggest that a more nuanced approach is needed to communicate hydrologic vulnerability to stakeholders and decision-makers in this semiarid region.

ContributorsHawkins, Gretchen (Author) / Vivoni, Enrique (Author) / Robles-Morua, Agustin (Author) / Mascaro, Giuseppe (Author) / Rivera, Erick (Author) / Dominguez, Francina (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-07-01
128304-Thumbnail Image.png
Description

Soil moisture dynamics reflect the complex interactions of meteorological conditions with soil, vegetation and terrain properties. In this study, intermediate-scale soil moisture estimates from the cosmic-ray neutron sensing (CRNS) method are evaluated for two semiarid ecosystems in the southwestern United States: a mesquite savanna at the Santa Rita Experimental Range

Soil moisture dynamics reflect the complex interactions of meteorological conditions with soil, vegetation and terrain properties. In this study, intermediate-scale soil moisture estimates from the cosmic-ray neutron sensing (CRNS) method are evaluated for two semiarid ecosystems in the southwestern United States: a mesquite savanna at the Santa Rita Experimental Range (SRER) and a mixed shrubland at the Jornada Experimental Range (JER). Evaluations of the CRNS method are performed for small watersheds instrumented with a distributed sensor network consisting of soil moisture sensor profiles, an eddy covariance tower, and runoff flumes used to close the water balance. We found a very good agreement between the CRNS method and the distributed sensor network (root mean square error (RMSE) of 0.009 and 0.013 m3 m-3 at SRER and JER, respectively) at the hourly timescale over the 19-month study period, primarily due to the inclusion of 5 cm observations of shallow soil moisture. Good agreement was also obtained in soil moisture changes estimated from the CRNS and watershed water balance methods (RMSE of 0.001 and 0.082 m3 m-3 at SRER and JER, respectively), with deviations due to bypassing of the CRNS measurement depth during large rainfall events. Once validated, the CRNS soil moisture estimates were used to investigate hydrological processes at the footprint scale at each site. Through the computation of the water balance, we showed that drier-than-average conditions at SRER promoted plant water uptake from deeper soil layers, while the wetter-than-average period at JER resulted in percolation towards deeper soils. The CRNS measurements were then used to quantify the link between evapotranspiration and soil moisture at a commensurate scale, finding similar predictive relations at both sites that are applicable to other semiarid ecosystems in the southwestern US.

ContributorsSchreiner-McGraw, Adam (Author) / Vivoni, Enrique (Author) / Mascaro, Giuseppe (Author) / Franz, T. E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-01-19
127924-Thumbnail Image.png
Description

The water resources and hydrologic extremes in Mediterranean basins are heavily influenced by climate variability. Modeling these watersheds is difficult due to the complex nature of the hydrologic response as well as the sparseness of hydrometeorological observations. In this work, we present a strategy to calibrate a distributed hydrologic model,

The water resources and hydrologic extremes in Mediterranean basins are heavily influenced by climate variability. Modeling these watersheds is difficult due to the complex nature of the hydrologic response as well as the sparseness of hydrometeorological observations. In this work, we present a strategy to calibrate a distributed hydrologic model, known as TIN-based Real-time Integrated Basin Simulator (tRIBS), in the Rio Mannu basin (RMB), a medium-sized watershed (472.5 km[superscript 2]) located in an agricultural area in Sardinia, Italy. In the RMB, precipitation, streamflow and meteorological data were collected within different historical periods and at diverse temporal resolutions. We designed two statistical tools for downscaling precipitation and potential evapotranspiration data to create the hourly, high-resolution forcing for the hydrologic model from daily records. Despite the presence of several sources of uncertainty in the observations and model parameterization, the use of the disaggregated forcing led to good calibration and validation performances for the tRIBS model, when daily discharge observations were available. The methodology proposed here can be also used to disaggregate outputs of climate models and conduct high-resolution hydrologic simulations with the goal of quantifying the impacts of climate change on water resources and the frequency of hydrologic extremes within medium-sized basins.

ContributorsMascaro, Giuseppe (Author) / Piras, M. (Author) / Deidda, R. (Author) / Vivoni, Enrique (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-10-24
128205-Thumbnail Image.png
Description

Future climate projections robustly indicate that the Mediterranean region will experience a significant decrease of mean annual precipitation and an increase in temperature. These changes are expected to seriously affect the hydrologic regime, with a limitation of water availability and an intensification of hydrologic extremes, and to negatively impact local

Future climate projections robustly indicate that the Mediterranean region will experience a significant decrease of mean annual precipitation and an increase in temperature. These changes are expected to seriously affect the hydrologic regime, with a limitation of water availability and an intensification of hydrologic extremes, and to negatively impact local economies. In this study, we quantify the hydrologic impacts of climate change in the Rio Mannu basin (RMB), an agricultural watershed of 472.5 km2 in Sardinia, Italy. To simulate the wide range of runoff generation mechanisms typical of Mediterranean basins, we adopted a physically based, distributed hydrologic model. The high-resolution forcings in reference and future conditions (30-year records for each period) were provided by four combinations of global and regional climate models, bias-corrected and downscaled in space and time (from ~25 km, 24 h to 5 km, 1 h) through statistical tools. The analysis of the hydrologic model outputs indicates that the RMB is expected to be severely impacted by future climate change. The range of simulations consistently predict (i) a significant diminution of mean annual runoff at the basin outlet, mainly due to a decreasing contribution of the runoff generation mechanisms depending on water available in the soil; (ii) modest variations in mean annual runoff and intensification of mean annual discharge maxima in flatter sub-basins with clay and loamy soils, likely due to a higher occurrence of infiltration excess runoff; (iii) reduction of soil water content and actual evapotranspiration in most areas of the basin; and (iv) a drop in the groundwater table. Results of this study are useful to support the adoption of adaptive strategies for management and planning of agricultural activities and water resources in the region.

ContributorsPiras, M. (Author) / Mascaro, Giuseppe (Author) / Deidda, R. (Author) / Vivoni, Enrique (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-15