Matching Items (198)
Filtering by

Clear all filters

150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
ContributorsLiu, Yi (Author) / Tylavksy, Daniel J (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
150050-Thumbnail Image.png
Description
The development of a Solid State Transformer (SST) that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV) power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad-active-bridge (QAB) converter which not only provides isolation for the load, but also

The development of a Solid State Transformer (SST) that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV) power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad-active-bridge (QAB) converter which not only provides isolation for the load, but also for the PV and storage. The AC-DC stage is implemented with a pulse-width-modulated (PWM) single phase rectifier. A unified gyrator-based average model is developed for a general multi-active-bridge (MAB) converter controlled through phase-shift modulation (PSM). Expressions to determine the power rating of the MAB ports are also derived. The developed gyrator-based average model is applied to the QAB converter for faster simulations of the proposed SST during the control design process as well for deriving the state-space representation of the plant. Both linear quadratic regulator (LQR) and single-input-single-output (SISO) types of controllers are designed for the DC-DC stage. A novel technique that complements the SISO controller by taking into account the cross-coupling characteristics of the QAB converter is also presented herein. Cascaded SISO controllers are designed for the AC-DC stage. The QAB demanded power is calculated at the QAB controls and then fed into the rectifier controls in order to minimize the effect of the interaction between the two SST stages. The dynamic performance of the designed control loops based on the proposed control strategies are verified through extensive simulation of the SST average and switching models. The experimental results presented herein show that the transient responses for each control strategy match those from the simulations results thus validating them.
ContributorsFalcones, Sixifo Daniel (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2011
149754-Thumbnail Image.png
Description
A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. Compared to the front-end process that is dominated by re-entrant product flows, the back-end process is linear and therefore more suitable for scheduling. However, the production scheduling of the back-end process

A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. Compared to the front-end process that is dominated by re-entrant product flows, the back-end process is linear and therefore more suitable for scheduling. However, the production scheduling of the back-end process is still very difficult due to the wide product mix, large number of parallel machines, product family related setups, machine-product qualification, and weekly demand consisting of thousands of lots. In this research, a novel mixed-integer-linear-programming (MILP) model is proposed for the batch production scheduling of a semiconductor back-end facility. In the MILP formulation, the manufacturing process is modeled as a flexible flow line with bottleneck stages, unrelated parallel machines, product family related sequence-independent setups, and product-machine qualification considerations. However, this MILP formulation is difficult to solve for real size problem instances. In a semiconductor back-end facility, production scheduling usually needs to be done every day while considering updated demand forecast for a medium term planning horizon. Due to the limitation on the solvable size of the MILP model, a deterministic scheduling system (DSS), consisting of an optimizer and a scheduler, is proposed to provide sub-optimal solutions in a short time for real size problem instances. The optimizer generates a tentative production plan. Then the scheduler sequences each lot on each individual machine according to the tentative production plan and scheduling rules. Customized factory rules and additional resource constraints are included in the DSS, such as preventive maintenance schedule, setup crew availability, and carrier limitations. Small problem instances are randomly generated to compare the performances of the MILP model and the deterministic scheduling system. Then experimental design is applied to understand the behavior of the DSS and identify the best configuration of the DSS under different demand scenarios. Product-machine qualification decisions have long-term and significant impact on production scheduling. A robust product-machine qualification matrix is critical for meeting demand when demand quantity or mix varies. In the second part of this research, a stochastic mixed integer programming model is proposed to balance the tradeoff between current machine qualification costs and future backorder costs with uncertain demand. The L-shaped method and acceleration techniques are proposed to solve the stochastic model. Computational results are provided to compare the performance of different solution methods.
ContributorsFu, Mengying (Author) / Askin, Ronald G. (Thesis advisor) / Zhang, Muhong (Thesis advisor) / Fowler, John W (Committee member) / Pan, Rong (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150389-Thumbnail Image.png
Description
Radiation-induced gain degradation in bipolar devices is considered to be the primary threat to linear bipolar circuits operating in the space environment. The damage is primarily caused by charged particles trapped in the Earth's magnetosphere, the solar wind, and cosmic rays. This constant radiation exposure leads to early end-of-life expectancies

Radiation-induced gain degradation in bipolar devices is considered to be the primary threat to linear bipolar circuits operating in the space environment. The damage is primarily caused by charged particles trapped in the Earth's magnetosphere, the solar wind, and cosmic rays. This constant radiation exposure leads to early end-of-life expectancies for many electronic parts. Exposure to ionizing radiation increases the density of oxide and interfacial defects in bipolar oxides leading to an increase in base current in bipolar junction transistors. Radiation-induced excess base current is the primary cause of current gain degradation. Analysis of base current response can enable the measurement of defects generated by radiation exposure. In addition to radiation, the space environment is also characterized by extreme temperature fluctuations. Temperature, like radiation, also has a very strong impact on base current. Thus, a technique for separating the effects of radiation from thermal effects is necessary in order to accurately measure radiation-induced damage in space. This thesis focuses on the extraction of radiation damage in lateral PNP bipolar junction transistors and the space environment. It also describes the measurement techniques used and provides a quantitative analysis methodology for separating radiation and thermal effects on the bipolar base current.
ContributorsCampola, Michael J (Author) / Barnaby, Hugh J (Thesis advisor) / Holbert, Keith E. (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2011
149932-Thumbnail Image.png
Description
Recent changes in the energy markets structure combined with the conti-nuous load growth have caused power systems to be operated under more stressed conditions. In addition, the nature of power systems has also grown more complex and dynamic because of the increasing use of long inter-area tie-lines and the high

Recent changes in the energy markets structure combined with the conti-nuous load growth have caused power systems to be operated under more stressed conditions. In addition, the nature of power systems has also grown more complex and dynamic because of the increasing use of long inter-area tie-lines and the high motor loads especially those comprised mainly of residential single phase A/C motors. Therefore, delayed voltage recovery, fast voltage collapse and short term voltage stability issues in general have obtained significant importance in relia-bility studies. Shunt VAr injection has been used as a countermeasure for voltage instability. However, the dynamic and fast nature of short term voltage instability requires fast and sufficient VAr injection, and therefore dynamic VAr devices such as Static VAr Compensators (SVCs) and STATic COMpensators (STAT-COMs) are used. The location and size of such devices are optimized in order to improve their efficiency and reduce initial costs. In this work time domain dy-namic analysis was used to evaluate trajectory voltage sensitivities for each time step. Linear programming was then performed to determine the optimal amount of required VAr injection at each bus, using voltage sensitivities as weighting factors. Optimal VAr injection values from different operating conditions were weighted and averaged in order to obtain a final setting of the VAr requirement. Some buses under consideration were either assigned very small VAr injection values, or not assigned any value at all. Therefore, the approach used in this work was found to be useful in not only determining the optimal size of SVCs, but also their location.
ContributorsSalloum, Ahmed (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
149939-Thumbnail Image.png
Description
The increased use of commercial complementary metal-oxide-semiconductor (CMOS) technologies in harsh radiation environments has resulted in a new approach to radiation effects mitigation. This approach utilizes simulation to support the design of integrated circuits (ICs) to meet targeted tolerance specifications. Modeling the deleterious impact of ionizing radiation on ICs fabricated

The increased use of commercial complementary metal-oxide-semiconductor (CMOS) technologies in harsh radiation environments has resulted in a new approach to radiation effects mitigation. This approach utilizes simulation to support the design of integrated circuits (ICs) to meet targeted tolerance specifications. Modeling the deleterious impact of ionizing radiation on ICs fabricated in advanced CMOS technologies requires understanding and analyzing the basic mechanisms that result in buildup of radiation-induced defects in specific sensitive regions. Extensive experimental studies have demonstrated that the sensitive regions are shallow trench isolation (STI) oxides. Nevertheless, very little work has been done to model the physical mechanisms that result in the buildup of radiation-induced defects and the radiation response of devices fabricated in these technologies. A comprehensive study of the physical mechanisms contributing to the buildup of radiation-induced oxide trapped charges and the generation of interface traps in advanced CMOS devices is presented in this dissertation. The basic mechanisms contributing to the buildup of radiation-induced defects are explored using a physical model that utilizes kinetic equations that captures total ionizing dose (TID) and dose rate effects in silicon dioxide (SiO2). These mechanisms are formulated into analytical models that calculate oxide trapped charge density (Not) and interface trap density (Nit) in sensitive regions of deep-submicron devices. Experiments performed on field-oxide-field-effect-transistors (FOXFETs) and metal-oxide-semiconductor (MOS) capacitors permit investigating TID effects and provide a comparison for the radiation response of advanced CMOS devices. When used in conjunction with closed-form expressions for surface potential, the analytical models enable an accurate description of radiation-induced degradation of transistor electrical characteristics. In this dissertation, the incorporation of TID effects in advanced CMOS devices into surface potential based compact models is also presented. The incorporation of TID effects into surface potential based compact models is accomplished through modifications of the corresponding surface potential equations (SPE), allowing the inclusion of radiation-induced defects (i.e., Not and Nit) into the calculations of surface potential. Verification of the compact modeling approach is achieved via comparison with experimental data obtained from FOXFETs fabricated in a 90 nm low-standby power commercial bulk CMOS technology and numerical simulations of fully-depleted (FD) silicon-on-insulator (SOI) n-channel transistors.
ContributorsSanchez Esqueda, Ivan (Author) / Barnaby, Hugh J (Committee member) / Schroder, Dieter (Thesis advisor) / Schroder, Dieter K. (Committee member) / Holbert, Keith E. (Committee member) / Gildenblat, Gennady (Committee member) / Arizona State University (Publisher)
Created2011
149723-Thumbnail Image.png
Description
This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree models. Associative classifiers can achieve

This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree models. Associative classifiers can achieve high accuracy, but the combination of many rules is difficult to interpret. Rule condition subset selection (RCSS) methods for associative classification are considered. RCSS aims to prune the rule conditions into a subset via feature selection. The subset then can be summarized into rule-based classifiers. Experiments show that classifiers after RCSS can substantially improve the classification interpretability without loss of accuracy. An ensemble feature selection method is proposed to learn Markov blankets for either discrete or continuous networks (without linear, Gaussian assumptions). The method is compared to a Bayesian local structure learning algorithm and to alternative feature selection methods in the causal structure learning problem. Feature selection is also used to enhance the interpretability of time series classification. Existing time series classification algorithms (such as nearest-neighbor with dynamic time warping measures) are accurate but difficult to interpret. This research leverages the time-ordering of the data to extract features, and generates an effective and efficient classifier referred to as a time series forest (TSF). The computational complexity of TSF is only linear in the length of time series, and interpretable features can be extracted. These features can be further reduced, and summarized for even better interpretability. Lastly, two variable importance measures are proposed to reduce the feature selection bias in tree-based ensemble models. It is well known that bias can occur when predictor attributes have different numbers of values. Two methods are proposed to solve the bias problem. One uses an out-of-bag sampling method called OOBForest, and the other, based on the new concept of a partial permutation test, is called a pForest. Experimental results show the existing methods are not always reliable for multi-valued predictors, while the proposed methods have advantages.
ContributorsDeng, Houtao (Author) / Runger, George C. (Thesis advisor) / Lohr, Sharon L (Committee member) / Pan, Rong (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2011
149658-Thumbnail Image.png
Description
Hydropower generation is one of the clean renewable energies which has received great attention in the power industry. Hydropower has been the leading source of renewable energy. It provides more than 86% of all electricity generated by renewable sources worldwide. Generally, the life span of a hydropower plant is considered

Hydropower generation is one of the clean renewable energies which has received great attention in the power industry. Hydropower has been the leading source of renewable energy. It provides more than 86% of all electricity generated by renewable sources worldwide. Generally, the life span of a hydropower plant is considered as 30 to 50 years. Power plants over 30 years old usually conduct a feasibility study of rehabilitation on their entire facilities including infrastructure. By age 35, the forced outage rate increases by 10 percentage points compared to the previous year. Much longer outages occur in power plants older than 20 years. Consequently, the forced outage rate increases exponentially due to these longer outages. Although these long forced outages are not frequent, their impact is immense. If reasonable timing of rehabilitation is missed, an abrupt long-term outage could occur and additional unnecessary repairs and inefficiencies would follow. On the contrary, too early replacement might cause the waste of revenue. The hydropower plants of Korea Water Resources Corporation (hereafter K-water) are utilized for this study. Twenty-four K-water generators comprise the population for quantifying the reliability of each equipment. A facility in a hydropower plant is a repairable system because most failures can be fixed without replacing the entire facility. The fault data of each power plant are collected, within which only forced outage faults are considered as raw data for reliability analyses. The mean cumulative repair functions (MCF) of each facility are determined with the failure data tables, using Nelson's graph method. The power law model, a popular model for a repairable system, can also be obtained to represent representative equipment and system availability. The criterion-based analysis of HydroAmp is used to provide more accurate reliability of each power plant. Two case studies are presented to enhance the understanding of the availability of each power plant and represent economic evaluations for modernization. Also, equipment in a hydropower plant is categorized into two groups based on their reliability for determining modernization timing and their suitable replacement periods are obtained using simulation.
ContributorsKwon, Ogeuk (Author) / Holbert, Keith E. (Thesis advisor) / Heydt, Gerald T (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2011
150197-Thumbnail Image.png
Description
Ever reducing time to market, along with short product lifetimes, has created a need to shorten the microprocessor design time. Verification of the design and its analysis are two major components of this design cycle. Design validation techniques can be broadly classified into two major categories: simulation based approaches and

Ever reducing time to market, along with short product lifetimes, has created a need to shorten the microprocessor design time. Verification of the design and its analysis are two major components of this design cycle. Design validation techniques can be broadly classified into two major categories: simulation based approaches and formal techniques. Simulation based microprocessor validation involves running millions of cycles using random or pseudo random tests and allows verification of the register transfer level (RTL) model against an architectural model, i.e., that the processor executes instructions as required. The validation effort involves model checking to a high level description or simulation of the design against the RTL implementation. Formal techniques exhaustively analyze parts of the design but, do not verify RTL against the architecture specification. The focus of this work is to implement a fully automated validation environment for a MIPS based radiation hardened microprocessor using simulation based approaches. The basic framework uses the classical validation approach in which the design to be validated is described in a Hardware Definition Language (HDL) such as VHDL or Verilog. To implement a simulation based approach a number of random or pseudo random tests are generated. The output of the HDL based design is compared against the one obtained from a "perfect" model implementing similar functionality, a mismatch in the results would thus indicate a bug in the HDL based design. Effort is made to design the environment in such a manner that it can support validation during different stages of the design cycle. The validation environment includes appropriate changes so as to support architecture changes which are introduced because of radiation hardening. The manner in which the validation environment is build is highly dependent on the specifications of the perfect model used for comparisons. This work implements the validation environment for two MIPS simulators as the reference model. Two bugs have been discovered in the RTL model, using simulation based approaches through the validation environment.
ContributorsSharma, Abhishek (Author) / Clark, Lawrence (Thesis advisor) / Holbert, Keith E. (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2011
150298-Thumbnail Image.png
Description
Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities

Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities increase. To account for these challenges associated with the rapid expansion of electric power systems, dynamic equivalents have been widely applied for the purpose of reducing the computational effort of simulation-based transient security assessment. Dynamic equivalents are commonly developed using a coherency-based approach in which a retained area and an external area are first demarcated. Then the coherent generators in the external area are aggregated and replaced by equivalenced models, followed by network reduction and load aggregation. In this process, an improperly defined retained area can result in detrimental impacts on the effectiveness of the equivalents in preserving the dynamic characteristics of the original unreduced system. In this dissertation, a comprehensive approach has been proposed to determine an appropriate retained area boundary by including the critical generators in the external area that are tightly coupled with the initial retained area. Further-more, a systematic approach has also been investigated to efficiently predict the variation in generator slow coherency behavior when the system operating condition is subject to change. Based on this determination, the critical generators in the external area that are tightly coherent with the generators in the initial retained area are retained, resulting in a new retained area boundary. Finally, a novel hybrid dynamic equivalent, consisting of both a coherency-based equivalent and an artificial neural network (ANN)-based equivalent, has been proposed and analyzed. The ANN-based equivalent complements the coherency-based equivalent at all the retained area boundary buses, and it is designed to compensate for the discrepancy between the full system and the conventional coherency-based equivalent. The approaches developed have been validated on a large portion of the Western Electricity Coordinating Council (WECC) system and on a test case including a significant portion of the eastern interconnection.
ContributorsMa, Feng (Author) / Vittal, Vijay (Thesis advisor) / Tylavsky, Daniel (Committee member) / Heydt, Gerald (Committee member) / Si, Jennie (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011