Matching Items (65)
150051-Thumbnail Image.png
Description
The purpose of this study was to investigate the impacts of visual cues and different types of self-explanation prompts on learning, cognitive load and intrinsic motivation, as well as the potential interaction between the two factors in a multimedia environment that was designed to deliver a computer-based lesson about the

The purpose of this study was to investigate the impacts of visual cues and different types of self-explanation prompts on learning, cognitive load and intrinsic motivation, as well as the potential interaction between the two factors in a multimedia environment that was designed to deliver a computer-based lesson about the human cardiovascular system. A total of 126 college students were randomly assigned in equal numbers (N = 21) to one of the six experimental conditions in a 2 X 3 factorial design with visual cueing (visual cues vs. no cues) and type of self-explanation prompts (prediction prompts vs. reflection prompts vs. no prompts) as the between-subjects factors. They completed a pretest, subjective cognitive load questions, intrinsic motivation questions, and a posttest during the course of the experience. A subsample (49 out of 126) of the participants' eye movements were tracked by an eye tracker. The results revealed that (a) participants presented with visually cued animations had significantly higher learning outcome scores than their peers who viewed uncued animations; and (b) cognitive load and intrinsic motivation had different impacts on learning in multimedia due to the moderation effect of visual cueing. There were no other significant findings in terms of learning outcomes, cognitive load, intrinsic motivation, and eye movements. Limitations, implications and future directions are discussed within the framework of cognitive load theory, cognitive theory of multimedia learning and cognitive-affective theory of learning with media.
ContributorsLin, Lijia (Author) / Atkinson, Robert (Thesis advisor) / Nelson, Brian (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2011
152322-Thumbnail Image.png
Description
The purpose of this survey study was to collect data from pre-K-12 educators in the U.S. regarding their perceptions of the purpose, conceptions, use, impact, and results of educational research. The survey tool was based on existing questionnaires and case studies in the literature, as well as newly developed items.

The purpose of this survey study was to collect data from pre-K-12 educators in the U.S. regarding their perceptions of the purpose, conceptions, use, impact, and results of educational research. The survey tool was based on existing questionnaires and case studies in the literature, as well as newly developed items. 3,908 educators in a database developed over 10+ years at the world's largest education company were sent a recruiting email; 400 elementary and secondary teachers in the final sample completed the online survey containing 48 questions over a three-week deployment period in the spring of 2013. Results indicated that overall teachers believe educational research is important, that the most important purpose of research is to increase effectiveness of classroom practice, yet research is not frequently sought out during the course of practice. Teachers perceive results in research journals as the most trustworthy yet also perceive research journals the most difficult to access (relying second-most often for research via in-service trainings). These findings have implications for teachers, administrators, policy-makers, and researchers. Educational researchers should seek to address both the theoretical and the applied aspects of learning. Professional development must make explicit links between research findings and classroom strategies and tactics, and research must be made more readily available to those who are not currently seeking additional credentialing, and therefore do not individually have access to scholarly literature. Further research is needed to expand the survey sample and refine the survey instrument. Similar research with administrators in pre-K-20 settings as well as in-depth interviews would serve to investigate the "why" of many findings.
ContributorsMahoney, Shawn (Author) / Savenye, Wilhelmina (Thesis advisor) / Nelson, Brian (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152306-Thumbnail Image.png
Description
With the unveiling of the National Educational Technology Plan 2010, both preservice and inservice K12 teachers in the United States are expected to create a classroom environment that fosters the creation of digital citizens. However, it is unclear whether or not teacher education programs build this direct instruction, or any

With the unveiling of the National Educational Technology Plan 2010, both preservice and inservice K12 teachers in the United States are expected to create a classroom environment that fosters the creation of digital citizens. However, it is unclear whether or not teacher education programs build this direct instruction, or any other method of introducing students to the National Education Technology Standards (NETS), "a standard of excellence and best practices in learning, teaching and leading with technology in education," into their curriculum (International Society for Technology in Education, 2012). As with most teaching skills, the NETS and standards-based technology integration must be learned through exposure during the teacher preparation curriculum, either through modeling, direct instruction or assignments constructed to encourage standards-based technology integration. This study attempted to determine the extent to which preservice teachers at Arizona State University (ASU) enrolled in the Mary Lou Fulton Teachers College (MLFTC) can recognize the National Education Technology Standards (NETS) published by the International Society for Technology in Education (ISTE) and to what extent preservice teachers are exposed to technology integration in accordance with the NETS-T standards in their preparation curriculum in order to answer the questions of whether or not teacher education curriculum provides students an opportunity to learn and apply the NETS-T and if preservice teachers in core teacher preparation program courses that include objectives that integrate technology are more likely to be able to identify NETS-T standards than those in courses that do not include these elements In order to answer these questions, a mixed-method design study was utilized to gather data from an electronic survey, one-on-one interviews with students, faculty, and administrators, and document analysis of core course objectives and curriculum goals in the teacher certification program at ASU. The data was analyzed in order to determine the relationship between the preservice teachers, the NETS-T standards, and the role technology plays in the curriculum of the teacher preparation program. Results of the analysis indicate that preservice teachers have a minimum NETS-T awareness at the Literacy level, indicating that they can use technology skills when prompted and explore technology independently.
ContributorsLewis, Carrie L (Author) / Nelson, Brian (Thesis advisor) / Archambault, Leanna (Thesis advisor) / Savenye, Wilhelmenia (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2013
151688-Thumbnail Image.png
Description
This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and motivation. The 1st version

This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and motivation. The 1st version was a business-as-usual traditional classroom teaching mathematics with direct instruction. The 2rd version of the course provided students with self-paced, individualized Algebra instruction with a web-based, intelligent tutor. The 3rd version of the course coupled self-paced, individualized instruction on the web-based, intelligent Algebra tutor coupled with a series of e-learning modules on self-regulated learning knowledge and skills that were distributed throughout the semester. A quasi-experimental, mixed methods evaluation design was used by assigning pre-registered, high-school remedial Algebra I class periods made up of an approximately equal number of students to one of the three study conditions or course versions: (a) the control course design, (b) web-based, intelligent tutor only course design, and (c) web-based, intelligent tutor + SRL e-learning modules course design. While no statistically significant differences on SRL skills, math achievement or motivation were found between the three conditions, effect-size estimates provide suggestive evidence that using the SRL e-learning modules based on ARCS motivation model (Keller, 2010) and Let Me Learn learning pattern instruction (Dawkins, Kottkamp, & Johnston, 2010) may help students regulate their learning and improve their study skills while using a web-based, intelligent Algebra tutor as evidenced by positive impacts on math achievement, motivation, and self-regulated learning skills. The study also explored predictive analyses using multiple regression and found that predictive models based on independent variables aligned to student demographics, learning mastery skills, and ARCS motivational factors are helpful in defining how to further refine course design and design learning evaluations that measure achievement, motivation, and self-regulated learning in web-based learning environments, including intelligent tutoring systems.
ContributorsBarrus, Angela (Author) / Atkinson, Robert K (Thesis advisor) / Van de Sande, Carla (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
151845-Thumbnail Image.png
Description
This study explored three methods to measure cognitive load in a learning environment using four logic puzzles that systematically varied in level of intrinsic cognitive load. Participants' perceived intrinsic load was simultaneously measured with a self-report measure--a traditional subjective measure--and two objective, physiological measures based on eye-tracking and EEG technology.

This study explored three methods to measure cognitive load in a learning environment using four logic puzzles that systematically varied in level of intrinsic cognitive load. Participants' perceived intrinsic load was simultaneously measured with a self-report measure--a traditional subjective measure--and two objective, physiological measures based on eye-tracking and EEG technology. In addition to gathering self-report, eye-tracking data, and EEG data, this study also captured data on individual difference variables and puzzle performance. Specifically, this study addressed the following research questions: 1. Are self-report ratings of cognitive load sensitive to tasks that increase in level of intrinsic load? 2. Are physiological measures sensitive to tasks that increase in level of intrinsic load? 3. To what extent do objective physiological measures and individual difference variables predict self-report ratings of intrinsic cognitive load? 4. Do the number of errors and the amount of time spent on each puzzle increase as the puzzle difficulty increases? Participants were 56 undergraduate students. Results from analyses with inferential statistics and data-mining techniques indicated features from the physiological data were sensitive to the puzzle tasks that varied in level of intrinsic load. The self-report measures performed similarly when the difference in intrinsic load of the puzzles was the most varied. Implications for these results and future directions for this line of research are discussed.
ContributorsJoseph, Stacey (Author) / Atkinson, Robert K (Thesis advisor) / Johnson-Glenberg, Mina (Committee member) / Nelson, Brian (Committee member) / Klein, James (Committee member) / Arizona State University (Publisher)
Created2013
151913-Thumbnail Image.png
Description
In this mixed-methods study, I examined the relationship between professional development based on the Common Core State Standards for Mathematics and teacher knowledge, classroom practice, and student learning. Participants were randomly assigned to experimental and control groups. The 50-hour professional development treatment was administered to the treatment group during one

In this mixed-methods study, I examined the relationship between professional development based on the Common Core State Standards for Mathematics and teacher knowledge, classroom practice, and student learning. Participants were randomly assigned to experimental and control groups. The 50-hour professional development treatment was administered to the treatment group during one semester, and then a follow-up replication treatment was administered to the control group during the subsequent semester. Results revealed significant differences in teacher knowledge as a result of the treatment using two instruments. The Learning Mathematics for Teaching scales were used to detect changes in mathematical knowledge for teaching, and an online sorting task was used to detect changes in teachers' knowledge of their standards. Results also indicated differences in classroom practice between pairs of matched teachers selected to participate in classroom observations and interviews. No statistical difference was detected between the groups' student assessment scores using the district's benchmark assessment system. This efficacy study contributes to the literature in two ways. First, it provides an evidence base for a professional development model designed to promote effective implementation of the Common Core State Standards for Mathematics. Second, it addresses ways to impact and measure teachers' knowledge of curriculum in addition to their mathematical content knowledge. The treatment was designed to focus on knowledge of curriculum, but it also successfully impacted teachers' specialized content knowledge, knowledge of content and students, and knowledge of content and teaching.
ContributorsRimbey, Kimberly A (Author) / Middleton, James A. (Thesis advisor) / Sloane, Finbarr (Committee member) / Atkinson, Robert K (Committee member) / Arizona State University (Publisher)
Created2013
152244-Thumbnail Image.png
Description
Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR)

Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR) delivered via mobile technology that could potentially provide rich, contextualized learning for understanding concepts related to statistics education. This study examined the effects of AR experiences for learning basic statistical concepts. Using a 3 x 2 research design, this study compared learning gains of 252 undergraduate and graduate students from a pre- and posttest given before and after interacting with one of three types of augmented reality experiences, a high AR experience (interacting with three dimensional images coupled with movement through a physical space), a low AR experience (interacting with three dimensional images without movement), or no AR experience (two dimensional images without movement). Two levels of collaboration (pairs and no pairs) were also included. Additionally, student perceptions toward collaboration opportunities and engagement were compared across the six treatment conditions. Other demographic information collected included the students' previous statistics experience, as well as their comfort level in using mobile devices. The moderating variables included prior knowledge (high, average, and low) as measured by the student's pretest score. Taking into account prior knowledge, students with low prior knowledge assigned to either high or low AR experience had statistically significant higher learning gains than those assigned to a no AR experience. On the other hand, the results showed no statistical significance between students assigned to work individually versus in pairs. Students assigned to both high and low AR experience perceived a statistically significant higher level of engagement than their no AR counterparts. Students with low prior knowledge benefited the most from the high AR condition in learning gains. Overall, the AR application did well for providing a hands-on experience working with statistical data. Further research on AR and its relationship to spatial cognition, situated learning, high order skill development, performance support, and other classroom applications for learning is still needed.
ContributorsConley, Quincy (Author) / Atkinson, Robert K (Thesis advisor) / Nguyen, Frank (Committee member) / Nelson, Brian C (Committee member) / Arizona State University (Publisher)
Created2013
151416-Thumbnail Image.png
Description
The purpose of this study was to investigate the effects of instructor response prompts and rubrics on students' performance in an asynchronous discussion-board assignment, their learning achievement on an objective-type posttest, and their reported satisfaction levels. Researchers who have studied asynchronous computer-mediated student discussion transcripts have found evidence of mostly

The purpose of this study was to investigate the effects of instructor response prompts and rubrics on students' performance in an asynchronous discussion-board assignment, their learning achievement on an objective-type posttest, and their reported satisfaction levels. Researchers who have studied asynchronous computer-mediated student discussion transcripts have found evidence of mostly mid-level critical thinking skills, with fewer examples limited to lower or higher order thinking skill demonstration. Some researchers suggest that instructors may facilitate increased demonstration of higher-order critical thinking skills within asynchronous discussion-board activities. However, there is little empirical evidence available to compare the use of different external supports to facilitate students' critical thinking skills performance and learning achievement in blended learning environments. Results of the present study indicate that response prompts and rubrics can affect students' discussion performance, learning, and satisfaction ratings. The results, however, are complex, perhaps mirroring the complexity of instructor-led online learning environments. Regarding discussion board performance, presenting students with a rubric tended to yield higher scores on most aspects that is, on overall performance, as well as depth and breadth of performance, though these differences were not significant. In contrast, instructor prompts tended to yield lower scores on aspects of discussion board performance. On breadth, in fact, this main effect difference was significant. Interactions also indicated significant differences on several aspects of discussion board performance, in most cases indicating that the combination of rubric and prompt was detrimental to scores. The learning performance on the quiz showed, again, the effectiveness of rubrics, with students who received the rubric earning significantly higher scores, and with no main effects or interactions for instructor prompts. Regarding student satisfaction, again, the picture is complicated. Results indicated that, in some instances, the integration of prompts resulted in lower satisfaction ratings, particularly in the areas of students' perceptions of the amount of work required, learning in the partially online format, and student-to-student interaction. Based on these results, design considerations to support rubric use and explicit feedback in asynchronous discussions to support student learning are proposed.
ContributorsGiacumo, Lisa (Author) / Savenye, Wilhelmina (Thesis advisor) / Nelson, Brian (Committee member) / Legacy, Jane (Committee member) / Bitter, Gary (Committee member) / Arizona State University (Publisher)
Created2012
151942-Thumbnail Image.png
Description
Researchers have postulated that math academic achievement increases student success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges require many of their first-year students to be placed in remedial courses (Bettinger & Long, 2009). Many high school graduates are

Researchers have postulated that math academic achievement increases student success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges require many of their first-year students to be placed in remedial courses (Bettinger & Long, 2009). Many high school graduates are entering college ill prepared for the rigors of higher education, lacking understanding of basic and important principles (ACT, 2012). The desire to increase academic achievement is a wide held aspiration in education and the idea of adapting instruction to individuals is one approach to accomplish this goal (Lalley & Gentile, 2009a). Frequently, adaptive learning environments rely on a mastery learning approach, it is thought that when students are afforded the opportunity to master the material, deeper and more meaningful learning is likely to occur. Researchers generally agree that the learning environment, the teaching approach, and the students' attributes are all important to understanding the conditions that promote academic achievement (Bandura, 1977; Bloom, 1968; Guskey, 2010; Cassen, Feinstein & Graham, 2008; Changeiywo, Wambugu & Wachanga, 2011; Lee, 2012; Schunk, 1991; Van Dinther, Dochy & Segers, 2011). The present study investigated the role of college students' affective attributes and skills, such as academic competence and academic resilience, in an adaptive mastery-based learning environment on their academic performance, while enrolled in a remedial mathematics course. The results showed that the combined influence of students' affective attributes and academic resilience had a statistically significant effect on students' academic performance. Further, the mastery-based learning environment also had a significant effect on their academic competence and academic performance.
ContributorsFoshee, Cecile Mary (Author) / Atkinson, Robert K (Thesis advisor) / Elliott, Stephen N. (Committee member) / Horan, John (Committee member) / Arizona State University (Publisher)
Created2013
151573-Thumbnail Image.png
Description
The gameplay experience can be understood as an interaction between player and game design characteristics. A greater understanding of these characteristics can be gained through empirical means. Subsequently, an enhanced knowledge of these characteristics should enable the creation of games that effectively generate desirable experiences for players. The purpose of

The gameplay experience can be understood as an interaction between player and game design characteristics. A greater understanding of these characteristics can be gained through empirical means. Subsequently, an enhanced knowledge of these characteristics should enable the creation of games that effectively generate desirable experiences for players. The purpose of this study was to investigate the relationships between gameplay enjoyment and the individual characteristics of gaming goal orientations, game usage, and gender. A total of 301 participants were surveyed and the data were analyzed using Structural Equation Modeling (SEM). This led to an expanded Gameplay Enjoyment Model (GEM) with 41 game features, an overarching Enjoyment factor, and 9 specific components, including Challenge, Companionship, Discovery, Fantasy, Fidelity, Identity, Multiplayer, Recognition, and Strategy. Furthermore, the 3x2 educational goal orientation framework was successfully applied to a gaming context. The resulting 3x2 Gaming Goal Orientations (GGO) model consists of 18 statements that describe players' motivations for gaming, which are distributed across the six dimensions of Task-Approach, Task-Avoidance, Self-Approach, Self-Avoidance, Other-Approach, and Other-Avoidance. Lastly, players' individual characteristics were used to predict gameplay enjoyment, which resulted in the formation of the GEM-Individual Characteristics (GEM-IC) model. In GEM-IC, the six GGO dimensions were the strongest predictors. Meanwhile, game usage variables like multiplayer, genre, and platform preference, were minimal to moderate predictors. Although commonly appearing in games research, gender and game time commitment variables failed to predict enjoyment. The results of this study enable important work to be conducted involving game experiences and player characteristics. After several empirical iterations, GEM is considered suitable to employ as a research and design tool. In addition, GGO should be useful to researchers interested in how player motivations relate to gameplay experiences. Moreover, GEM-IC points to several variables that may prove useful in future research. Accordingly, it is posited that researchers will derive more meaningful insights on games and players by investigating detailed, context-specific characteristics as compared to general, demographic ones. Ultimately, it is believed that GEM, GGO, and GEM-IC will be useful tools for researchers and designers who seek to create effective gameplay experiences that meet the needs of players.
ContributorsQuick, John (Author) / Atkinson, Robert (Thesis advisor) / McNamara, Danielle (Committee member) / Nelson, Brian (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013