Matching Items (1,234)
Filtering by

Clear all filters

172757-Thumbnail Image.png
Description

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development,

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands. The physical interaction of receptors and ligands directs the genetic response of the first cell to produce proteins that define the type of cell it will become. One of the earliest discovered roles of the Notch signaling pathway in vertebrates is in somite formation (somitogenesis). Somitogenesis is the formation of somites, which are sphere-like structures in early vertebrate embryos that are the first visible signs of segmentation. Somites then help to define many tissues and features of the adult animal's body. The Notch signaling pathway plays at least two distinct roles during somitogenesis: the first is maintenance of an oscillating protein gradient, called the segmental clock, and the second is establishing the polarity of somites. Mutations to genes in the Notch pathway can result in birth defects characterized by abnormal development of bones of the spine and ribs, like spondylocostal dysostosis. Additionally, dysfunction in the pathway linked to cancer progression, HIV-related complications, and Alzheimer´s disease, among other disorders.

Created2014-03-23
172758-Thumbnail Image.png
Description

James M Cummins published 'The Role of Maternal Mitochondria during Oogenesis, Fertilization and Embryogenesis' 30 January 2002 in Reproductive BioMedicine Online. In the article, Cummins examines the role of the energy producing cytoplasmic particles, or organelles called mitochondria. Humans inherit mitochondria from their mothers, and mechanisms have evolved to eliminate

James M Cummins published 'The Role of Maternal Mitochondria during Oogenesis, Fertilization and Embryogenesis' 30 January 2002 in Reproductive BioMedicine Online. In the article, Cummins examines the role of the energy producing cytoplasmic particles, or organelles called mitochondria. Humans inherit mitochondria from their mothers, and mechanisms have evolved to eliminate sperm mitochondria in early embryonic development. Mitochondria contain their own DNA (mtDNA) separate from nuclear DNA (nDNA). Cummins's article describes how mitochondria influence the development of egg cells called oocytes. Mitochondria also function in the union of oocyte and sperm, early formation of the embryo, and in in vitro fertilization (IVF) techniques, such as the transfer of donor cytoplasm into an oocyte resulting in a technique called ooplasmic transfer.

Created2014-09-19
172759-Thumbnail Image.png
Description

In 2005, the organization Asian Communities for Reproductive Justice, or ACRJ, published “A New Vision for Advancing Our Movement for Reproductive Health, Reproductive Rights, and Reproductive Justice,” hereafter “A New Vision,” in which the authors explain how reproductive justice is hindered by societal oppressions against women of color. ACRJ, known

In 2005, the organization Asian Communities for Reproductive Justice, or ACRJ, published “A New Vision for Advancing Our Movement for Reproductive Health, Reproductive Rights, and Reproductive Justice,” hereafter “A New Vision,” in which the authors explain how reproductive justice is hindered by societal oppressions against women of color. ACRJ, known as Forward Together since 2012, was a founding member of SisterSong Women of Color Reproductive Justice Collective, a collective of organizations founded by people of color that work to advance the reproductive justice movement. In “A New Vision,” the authors elaborate that reproductive justice is about changing the societal structures that produce reproductive oppressions. They assert that a radical transformation is necessary in order to progress toward the establishment of full and equal human rights, reproductive rights, and economic rights to ensure equitable access to healthcare, education, and opportunity.

Created2020-11-17
158200-Thumbnail Image.png
Description
C*-algebras of categories of paths were introduced by Spielberg in 2014 and generalize C*-algebras of higher rank graphs. An approximately finite dimensional (AF) C*-algebra is one which is isomorphic to an inductive limit of finite dimensional C*-algebras. In 2012, D.G. Evans and A. Sims proposed an analogue of a cycle

C*-algebras of categories of paths were introduced by Spielberg in 2014 and generalize C*-algebras of higher rank graphs. An approximately finite dimensional (AF) C*-algebra is one which is isomorphic to an inductive limit of finite dimensional C*-algebras. In 2012, D.G. Evans and A. Sims proposed an analogue of a cycle for higher rank graphs and show that the lack of such an object is necessary for the associated C*-algebra to be AF. Here, I give a class of examples of categories of paths whose associated C*-algebras are Morita equivalent to a large number of periodic continued fraction AF algebras, first described by Effros and Shen in 1980. I then provide two examples which show that the analogue of cycles proposed by Evans and Sims is neither a necessary nor a sufficient condition for the C*-algebra of a category of paths to be AF.
ContributorsMitscher, Ian (Author) / Spielberg, John (Thesis advisor) / Bremner, Andrew (Committee member) / Kalizsewski, Steven (Committee member) / Kawski, Matthias (Committee member) / Quigg, John (Committee member) / Arizona State University (Publisher)
Created2020