Matching Items (1,261)
Filtering by

Clear all filters

134758-Thumbnail Image.png
Description
The first chapter of this essay will focus primarily on the history of graffiti from what is generally understood as its origin with the first writers who used spray paint as their tools of creation up until modern times. This chapter will look at how the history has formed the

The first chapter of this essay will focus primarily on the history of graffiti from what is generally understood as its origin with the first writers who used spray paint as their tools of creation up until modern times. This chapter will look at how the history has formed the general perception of this art form and how it has changed over the years. The second chapter will discuss three archetypes of graffiti seen today. These archetypes are: city funded art murals, city or privately funded freewalls, and artistic mitigations of vandalism. Each of these archetypes will be explored via multiple real world examples and we will consider how each of these examples do or do not succeed in displaying graffiti as a well regarded public art form. The third chapter will propose another archetype for creating graffiti that has not been widely realized or put into practice. The third chapter will then speculate using the knowledge from the previous existing archetypes to discuss whether or not it could be utilized in the real world effectively and a conclusion will be drawn about the methods of graffiti that are practical and effective means to create well regarded art.
ContributorsMiller, Quinn David (Author) / Creath, Richard (Thesis director) / Chew, Matthew (Committee member) / Minteer, Ben (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
One of the central ideas in Rudolf Carnap's philosophy is that of convention. For Carnap, conventionality holds as long as there is some latitude of choice for which theoretical reasoning (correctness vs. incorrectness with regard to the facts) is insufficient and practical reasoning is needed to decide between the alternatives.

One of the central ideas in Rudolf Carnap's philosophy is that of convention. For Carnap, conventionality holds as long as there is some latitude of choice for which theoretical reasoning (correctness vs. incorrectness with regard to the facts) is insufficient and practical reasoning is needed to decide between the alternatives. Carnap uses this understanding of convention to show how one can circumvent the problem of justification for areas such as physical geometry and logic, and he also uses it to propose a new paradigm for philosophy, namely his proposal of the Principle of Tolerance. I maintain that such an understanding of conventionality is helpful and that it ought to be more widely adopted. I also believe that it would be difficult to apply this understanding of conventionality to the realm of religion, but it can be easily and helpfully applied to the realm of politics.
ContributorsBlair, Jarrod (Author) / Creath, Richard (Thesis director) / Armendt, Brad (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
157324-Thumbnail Image.png
Description
This dissertation examines the efforts of the Carnegie Image Tube Committee (CITC), a group created by Vannevar Bush and composed of astronomers and physicists, who sought to develop a photoelectric imaging device, generally called an image tube, to aid astronomical observations. The Carnegie Institution of Washington’s Department of Terrestrial Magnetism

This dissertation examines the efforts of the Carnegie Image Tube Committee (CITC), a group created by Vannevar Bush and composed of astronomers and physicists, who sought to develop a photoelectric imaging device, generally called an image tube, to aid astronomical observations. The Carnegie Institution of Washington’s Department of Terrestrial Magnetism coordinated the CITC, but the committee included members from observatories and laboratories across the United States. The CITC, which operated from 1954 to 1976, sought to replace direct photography as the primary means of astronomical imaging.

Physicists, who gained training in electronics during World War II, led the early push for the development of image tubes in astronomy. Vannevar Bush’s concern for scientific prestige led him to form a committee to investigate image tube technology, and postwar federal funding for the sciences helped the CITC sustain development efforts for a decade. During those development years, the CITC acted as a mediator between the astronomical community and the image tube producers but failed to engage astronomers concerning various development paths, resulting in a user group without real buy-in on the final product.

After a decade of development efforts, the CITC designed an image tube, which Radio Corporation of American manufactured, and, with additional funding from the National Science Foundation, the committee distributed to observatories around the world. While excited about the potential of electronic imaging, few astronomers used the Carnegie-developed device regularly. Although the CITC’s efforts did not result in an overwhelming adoption of image tubes by the astronomical community, examining the design, funding, production, and marketing of the Carnegie image tube shows the many and varied processes through which astronomers have acquired new tools. Astronomers’ use of the Carnegie image tube to acquire useful scientific data illustrates factors that contribute to astronomers’ adoption or non-adoption of those new tools.
ContributorsThompson, Samantha Michelle (Author) / Ellison, Karin (Thesis advisor) / Wetmore, Jameson (Thesis advisor) / Maienschein, Jane (Committee member) / Creath, Richard (Committee member) / DeVorkin, David (Committee member) / Arizona State University (Publisher)
Created2019
154832-Thumbnail Image.png
Description
Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a

Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a question worth examining. Did systems biology become a systems-oriented science or a biology-oriented science from 1992 to 2013?

This project utilized computational tools to analyze large data sets and interpreted the results from historical and philosophical perspectives. Tools deployed were derived from scientometrics, corpus linguistics, text-based analysis, network analysis, and GIS analysis to analyze more than 9000 articles (metadata and text) on systems biology. The application of these tools to a HPS project represents a novel approach.

The dissertation shows that systems biology has transitioned from a more mathematical, computational, and engineering-oriented discipline focusing on modeling to a more biology-oriented discipline that uses modeling as a means to address real biological problems. Also, the results show that bioengineering and medical research has increased within systems biology. This is reflected in the increase of the centrality of biology-related concepts such as cancer, over time. The dissertation also compares the development of systems biology in China with some other parts of the world, and reveals regional differences, such as a unique trajectory of systems biology in China related to a focus on traditional Chinese medicine.

This dissertation adds to the historiography of modern biology where few studies have focused on systems biology compared with the history of molecular biology and evolutionary biology.
ContributorsZou, Yawen (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Ellison, Karin (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2016
154280-Thumbnail Image.png
Description
The study of wasp societies (family Vespidae) has played a central role in advancing our knowledge of why social life evolves and how it functions. This dissertation asks: How have scientists generated and evaluated new concepts and theories about social life and its evolution by investigating wasp societies? It addresses

The study of wasp societies (family Vespidae) has played a central role in advancing our knowledge of why social life evolves and how it functions. This dissertation asks: How have scientists generated and evaluated new concepts and theories about social life and its evolution by investigating wasp societies? It addresses this question both from a narrative/historical and from a reflective/epistemological perspective. The historical narratives reconstruct the investigative pathways of the Italian entomologist Leo Pardi (1915-1990) and the British evolutionary biologist William D. Hamilton (1936-2000). The works of these two scientists represent respectively the beginning of our current understanding of immediate and evolutionary causes of social life. Chapter 1 shows how Pardi, in the 1940s, generated a conceptual framework to explain how wasp colonies function in terms of social and reproductive dominance. Chapter 2 shows how Hamilton, in the 1960s, attempted to evaluate his own theory of inclusive fitness by investigating social wasps. The epistemological reflections revolve around the idea of investigative framework for theory evaluation. Chapter 3 draws on the analysis of important studies on social wasps from the 1960s and 1970s and provides an account of theory evaluation in the form of an investigative framework. The framework shows how inferences from empirical data (bottom-up) and inferences from the theory (top-down) inform one another in the generation of hypotheses, predictions and statements about phenomena of social evolution. It provides an alternative to existing philosophical accounts of scientific inquiry and theory evaluation, which keep a strong, hierarchical distinction between inferences from the theory and inferences from the data. The historical narratives in this dissertation show that important scientists have advanced our knowledge of complex biological phenomena by constantly interweaving empirical, conceptual, and theoretical work. The epistemological reflections argue that we need holistic frameworks that account for how multiple scientific practices synergistically contribute to advance our knowledge of complex phenomena. Both narratives and reflections aim to inspire and inform future work in social evolution capitalizing on lessons learnt from the past.
ContributorsCaniglia, Guido (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Mitchell, Sandra (Committee member) / Arizona State University (Publisher)
Created2016
154456-Thumbnail Image.png
Description
The Modern Synthesis embodies a theory of natural selection where selection is to be fundamentally understood in terms of measures of fitness and the covariance of reproductive success and trait or character variables. Whether made explicit or left implicit, the notion that selection requires that some trait variable cause reproductive

The Modern Synthesis embodies a theory of natural selection where selection is to be fundamentally understood in terms of measures of fitness and the covariance of reproductive success and trait or character variables. Whether made explicit or left implicit, the notion that selection requires that some trait variable cause reproductive success has been deemphasized in our modern understanding of exactly what selection amounts to. The dissertation seeks to advance a theory of natural selection that is fundamentally causal. By focusing on the causal nature of natural selection (rather than on fitness or statistical formulae), certain conceptual and methodological problems are seen in a new, clarifying light and avenues toward new, interesting solutions to those problems are illustrated. First, the dissertation offers an update to explicitly causal theories of when exactly a trait counts as an adaptation upon fixation in a population and draws out theoretical and practical implications for evolutionary biology. Second, I examine a case of a novel character that evolves by niche construction and argue that it evolves by selection for it and consider implications for understanding adaptations and drift. The third contribution of the dissertation is an argument for the importance of defining group selection causally and an argument against model pluralism in the levels of selection debate. Fourth, the dissertation makes a methodological contribution. I offer the first steps toward an explicitly causal methodology for inferring the causes of selection—something often required in addition to inferring the causes of reproductive success. The concluding chapter summarizes the work and discusses potential paths for future work.
ContributorsAnderson, Wesley (Author) / Armendt, Brad (Thesis advisor) / Creath, Richard (Committee member) / Glymour, Bruce (Committee member) / Kinzig, Ann (Committee member) / Perrings, Charles (Committee member) / Arizona State University (Publisher)
Created2016
155035-Thumbnail Image.png
Description
A central task for historians and philosophers of science is to characterize and analyze the epistemic practices in a given science. The epistemic practice of a science includes its explanatory goals as well as the methods used to achieve these goals. This dissertation addresses the epistemic practices in gene expression

A central task for historians and philosophers of science is to characterize and analyze the epistemic practices in a given science. The epistemic practice of a science includes its explanatory goals as well as the methods used to achieve these goals. This dissertation addresses the epistemic practices in gene expression research spanning the mid-twentieth century to the twenty-first century. The critical evaluation of the standard historical narratives of the molecular life sciences clarifies certain philosophical problems with respect to reduction, emergence, and representation, and offers new ways with which to think about the development of scientific research and the nature of scientific change.

The first chapter revisits some of the key experiments that contributed to the development of the repression model of genetic regulation in the lac operon and concludes that the early research on gene expression and genetic regulation depict an iterative and integrative process, which was neither reductionist nor holist. In doing so, it challenges a common application of a conceptual framework in the history of biology and offers an alternative framework. The second chapter argues that the concept of emergence in the history and philosophy of biology is too ambiguous to account for the current research in post-genomic molecular biology and it is often erroneously used to argue against some reductionist theses. The third chapter investigates the use of network representations of gene expression in developmental evolution research and takes up some of the conceptual and methodological problems it has generated. The concluding comments present potential avenues for future research arising from each substantial chapter.

In sum, this dissertation argues that the epistemic practices of gene expression research are an iterative and integrative process, which produces theoretical representations of the complex interactions in gene expression as networks. Moreover, conceptualizing these interactions as networks constrains empirical research strategies by the limited number of ways in which gene expression can be controlled through general rules of network interactions. Making these strategies explicit helps to clarify how they can explain the dynamic and adaptive features of genomes.
ContributorsRacine, Valerie (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred D (Thesis advisor) / Creath, Richard (Committee member) / Newfeld, Stuart (Committee member) / Morange, Michel (Committee member) / Arizona State University (Publisher)
Created2016
153012-Thumbnail Image.png
Description
Computational tools in the digital humanities often either work on the macro-scale, enabling researchers to analyze huge amounts of data, or on the micro-scale, supporting scholars in the interpretation and analysis of individual documents. The proposed research system that was developed in the context of this dissertation ("Quadriga System") works

Computational tools in the digital humanities often either work on the macro-scale, enabling researchers to analyze huge amounts of data, or on the micro-scale, supporting scholars in the interpretation and analysis of individual documents. The proposed research system that was developed in the context of this dissertation ("Quadriga System") works to bridge these two extremes by offering tools to support close reading and interpretation of texts, while at the same time providing a means for collaboration and data collection that could lead to analyses based on big datasets. In the field of history of science, researchers usually use unstructured data such as texts or images. To computationally analyze such data, it first has to be transformed into a machine-understandable format. The Quadriga System is based on the idea to represent texts as graphs of contextualized triples (or quadruples). Those graphs (or networks) can then be mathematically analyzed and visualized. This dissertation describes two projects that use the Quadriga System for the analysis and exploration of texts and the creation of social networks. Furthermore, a model for digital humanities education is proposed that brings together students from the humanities and computer science in order to develop user-oriented, innovative tools, methods, and infrastructures.
ContributorsDamerow, Julia (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Ellison, Karin (Committee member) / Hooper, Wallace (Committee member) / Renn, Jürgen (Committee member) / Arizona State University (Publisher)
Created2014
153750-Thumbnail Image.png
Description
How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s,

How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s, one prominent ecologist distinguished what he called “ecological time”—around ten generations—from “evolutionary time”— around half of a million years. For most ecologists working in the first half of the 20th century, evolution by natural selection was indeed a slow and plodding process, tangible in its products but not in its processes, and inconsequential for explaining most ecological phenomena. During the 1960s, however, many ecologists began to see evolution as potentially rapid and observable. Natural selection moved from the distant past—a remote explanans for both extant biological diversity and paleontological phenomena—to a measurable, quantifiable mechanism molding populations in real time.

The idea that adaptive evolution could be rapid and highly localized was a significant enabling condition for the emergence of ecological genetics in the second half of the 20th century. Most of what historians know about that conceptual shift and the rise of ecological genetics centers on the work of Oxford zoologist E. B. Ford and his students on polymorphism in Lepidotera, especially industrial melanism in Biston betularia. I argue that ecological genetics in Britain was not the brainchild of an infamous patriarch (Ford), but rather the outgrowth of a long tradition of pastureland research at plant breeding stations in Scotland and Wales, part of a discipline known as “genecology” or “experimental taxonomy.” Bradshaw’s investigative activities between 1948 and 1968 were an outgrowth of the specific brand of plant genecology practiced at the Welsh and Scottish Plant Breeding stations. Bradshaw generated evidence that plant populations with negligible reproductive isolation—separated by just a few meters—could diverge and adapt to contrasting environmental conditions in just a few generations. In Bradshaw’s research one can observe the crystallization of a new concept of rapid adaptive evolution, and the methodological and conceptual transformation of genecology into ecological genetics.
ContributorsPeirson, Bruce Richard Erick (Author) / Laubichler, Manfred D (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2015
153237-Thumbnail Image.png
Description
This thesis is concerned with the methodological role of intuitions in metaphysics. It is divided into two main parts. Part I argues that an academic field can only employ a method of gathering evidence if it has established some agreed-upon standards regarding how to evaluate uses of this method. Existing

This thesis is concerned with the methodological role of intuitions in metaphysics. It is divided into two main parts. Part I argues that an academic field can only employ a method of gathering evidence if it has established some agreed-upon standards regarding how to evaluate uses of this method. Existing meta-philosophical disputes take the nature of intuitions to be their starting point. This is a mistake. My concern is not the epistemic status of intuitions, but rather how metaphysicians appeal to intuitions as a form of evidence. In order for intuitions to play a viable role in research they must be subject to certain constraints, regardless of whether they allow individual researchers to know that their theories are true. Metaphysicians are not permitted to use intuitions as arbitrarily having different evidential status in different circumstances, nor should they continue to use intuitions as evidence in certain disputes when there is disagreement amongst disputants about whether intuitions should have this evidential status.

Part II is dedicated to showing that metaphysicians currently use intuitions in precisely the sort of inconsistent manner that was shown to be impermissible in Part I. I first consider several competing theories of how intuitions function as evidence and argue that they all fail. As they are currently used in metaphysics, intuitions are analogous to instruments in the sciences in that they are taken to be a substantial non-inferential source of evidence for theories. I then analyze several major metaphysical disputes and show that the source of controversy in these disputes boils down to inconsistencies in how the different parties treat intuitions as evidence. I conclude that metaphysicians must abandon appeals to intuition as evidence--at least until the field can agree upon some general standards that can resolve these inconsistencies.
ContributorsMusgrave, Shea (Author) / Creath, Richard (Thesis advisor) / Pinillos, Nestor A. (Committee member) / Kobes, Bernard W. (Committee member) / Arizona State University (Publisher)
Created2014