Matching Items (2,877)
Filtering by

Clear all filters

Description

The following analysis was conducted at the Arizona State University open loop wind tunnel. Two 1/24-th scale NASCAR models were placed in a wind tunnel test section and were adjusted to study drafting that commonly occurs at superspeedway racetracks. The purpose of the experiment was to determine how drafting affects

The following analysis was conducted at the Arizona State University open loop wind tunnel. Two 1/24-th scale NASCAR models were placed in a wind tunnel test section and were adjusted to study drafting that commonly occurs at superspeedway racetracks. The purpose of the experiment was to determine how drafting affects a leading and trailing car through changes in distance. A wind tunnel model was developed consisting of two 2019 NASCAR Chevy Camaro race car models, two bar-style load cells, and a programmed Arduino UNO. Two trials were run at each drafting distance, 0, 0.5, 1, 1.5, and 2 car lengths apart. Each trial was run at a wind tunnel velocity of 78 mph (35 m/s) and force data was collected to represent the drag effects at each drafting location. Based on previously published experimentation, this analysis provided important data that related drafting effects in scale model race cars to full-scale vehicles. The experiment showed that scale model testing can be accurately completed when the wind tunnel Reynolds number is of the same magnitude as a full-scale NASCAR. However, the wind tunnel data collected was proven to be fully laminar flow and did not compare to the flow characteristics of typically turbulent flow seen in superspeedway races. Overall, the analytical drag analysis of drafting NASCAR models proved that wind tunnel testing is only accurate when many parameters are met and should only be used as a method of validation to full-scale testing.

ContributorsOlszak, Parker T (Author) / Takahashi, Timothy (Thesis director) / Kasbaoui, Mohamed (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
174861-Thumbnail Image.jpg
Created1925-19-39 (uncertain)
174868-Thumbnail Image.jpg
Created1934
174924-Thumbnail Image.jpg
Created1926
174931-Thumbnail Image.jpg
Created1926
174934-Thumbnail Image.jpg
Created1926
174981-Thumbnail Image.jpg
Created1928
Description

Human Papillomavirus, or HPV, is a viral pathogen that most commonly spreads through sexual contact. HPV strains 6 and 11 normally cause genital warts, while HPV strains 16 and 18 commonly cause cervical cancer, which causes cancerous cells to spread in the cervix. Physicians can detect those HPV strains, using

Human Papillomavirus, or HPV, is a viral pathogen that most commonly spreads through sexual contact. HPV strains 6 and 11 normally cause genital warts, while HPV strains 16 and 18 commonly cause cervical cancer, which causes cancerous cells to spread in the cervix. Physicians can detect those HPV strains, using a Pap smear, which is a diagnostic test that collects cells from the female cervix.

Created2021-04-06
Description

Johann Gregor Mendel studied patterns of trait inheritance in plants during the nineteenth century. Mendel, an Augustinian monk, conducted experiments on pea plants at St. Thomas’ Abbey in what is now Brno, Czech Republic. Twentieth century scientists used Mendel’s recorded observations to create theories about genetics.

Created2022-01-13