Matching Items (25)
150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
152016-Thumbnail Image.png
Description
Energy is a central concern of sustainability because how we produce and consume energy affects society, economy, and the environment. Sustainability scientists are interested in energy transitions away from fossil fuels because they are nonrenewable, increasingly expensive, have adverse health effects, and may be the main driver of climate change.

Energy is a central concern of sustainability because how we produce and consume energy affects society, economy, and the environment. Sustainability scientists are interested in energy transitions away from fossil fuels because they are nonrenewable, increasingly expensive, have adverse health effects, and may be the main driver of climate change. They see an opportunity for developing countries to avoid the negative consequences fossil-fuel-based energy systems, and also to increase resilience, by leap-frogging-over the centralized energy grid systems that dominate the developed world. Energy transitions pose both challenges and opportunities. Obstacles to transitions include 1) an existing, centralized, complex energy-grid system, whose function is invisible to most users, 2) coordination and collective-action problems that are path dependent, and 3) difficulty in scaling up RE technologies. Because energy transitions rely on technological and social innovations, I am interested in how institutional factors can be leveraged to surmount these obstacles. The overarching question that underlies my research is: What constellation of institutional, biophysical, and social factors are essential for an energy transition? My objective is to derive a set of "design principles," that I term institutional drivers, for energy transitions analogous to Ostrom's institutional design principles. My dissertation research will analyze energy transitions using two approaches: applying the Institutional Analysis and Development Framework and a comparative case study analysis comprised of both primary and secondary sources. This dissertation includes: 1) an analysis of the world's energy portfolio; 2) a case study analysis of five countries; 3) a description of the institutional factors likely to promote a transition to renewable-energy use; and 4) an in-depth case study of Thailand's progress in replacing nonrenewable energy sources with renewable energy sources. My research will contribute to our understanding of how energy transitions at different scales can be accomplished in developing countries and what it takes for innovation to spread in a society.
ContributorsKoster, Auriane Magdalena (Author) / Anderies, John M (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Van Der Leeuw, Sander (Committee member) / Arizona State University (Publisher)
Created2013
152093-Thumbnail Image.png
Description
Irrigation agriculture has been heralded as the solution to feeding the world's growing population. To this end, irrigation agriculture is both extensifying and intensifying in arid regions across the world in an effort to create highly productive agricultural systems. Over one third of modern irrigated fields, however, show signs of

Irrigation agriculture has been heralded as the solution to feeding the world's growing population. To this end, irrigation agriculture is both extensifying and intensifying in arid regions across the world in an effort to create highly productive agricultural systems. Over one third of modern irrigated fields, however, show signs of serious soil degradation, including salinization and waterlogging, which threaten the productivity of these fields and the world's food supply. Surprisingly, little ecological data on agricultural soils have been collected to understand and address these problems. How, then, can expanding and intensifying modern irrigation systems remain agriculturally productive for the long-term? Archaeological case studies can provide critical insight into how irrigated agricultural systems may be sustainable for hundreds, if not thousands, of years. Irrigation systems in Mesopotamia, for example, have been cited consistently as a cautionary tale of the relationship between mismanaged irrigation systems and the collapse of civilizations, but little data expressly link how and why irrigation failed in the past. This dissertation presents much needed ecological data from two different regions of the world - the Phoenix Basin in southern Arizona and the Pampa de Chaparrí on the north coast of Peru - to explore how agricultural soils were affected by long-term irrigation in a variety of social and economic contexts, including the longevity and intensification of irrigation agriculture. Data from soils in prehispanic and historic agricultural fields indicate that despite long-lived and intensive irrigation farming, farmers in both regions created strategies to sustain large populations with irrigation agriculture for hundreds of years. In the Phoenix Basin, Hohokam and O'odham farmers relied on sedimentation from irrigation water to add necessary fine sediments and nutrients to otherwise poor desert soils. Similarly, on the Pampa, farmers relied on sedimentation in localized contexts, but also constructed fields with ridges and furrows to draw detrimental salts away from planting surfaces in the furrows on onto the ridges. These case studies are then compared to failing modern and ancient irrigated systems across the world to understand how the centralization of management may affect the long-term sustainability of irrigation agriculture.
ContributorsStrawhacker, Colleen (Author) / Spielmann, Katherine A. (Thesis advisor) / Hall, Sharon J (Committee member) / Nelson, Margaret C. (Committee member) / Sandor, Jonathan A (Committee member) / Arizona State University (Publisher)
Created2013
151588-Thumbnail Image.png
Description
This work is an assemblage of three applied projects that address the institutional and spatial constraints to managing threatened and endangered (T & E) terrestrial species. The first project looks at the role of the Endangered Species Act (ESA) in protecting wildlife and whether banning non–conservation activities on multi-use federal

This work is an assemblage of three applied projects that address the institutional and spatial constraints to managing threatened and endangered (T & E) terrestrial species. The first project looks at the role of the Endangered Species Act (ESA) in protecting wildlife and whether banning non–conservation activities on multi-use federal lands is socially optimal. A bioeconomic model is used to identify scenarios where ESA–imposed regulations emerge as optimal strategies and to facilitate discussion on feasible long–term strategies in light of the ongoing public land–use debate. Results suggest that banning harmful activities is a preferred strategy when valued species are in decline or exposed to poor habitat quality. However such a strategy cannot be sustained in perpetuity, a switch to land–use practices characteristic of habitat conservation plans is recommended. The spatial portion of this study is motivated by the need for a more systematic quantification and assessment of landscape structure ahead of species reintroduction; this portion is further broken up into two parts. The first explores how connectivity between habitat patches promotes coexistence among multiple interacting species. An agent–based model of a two–patch metapopulation is developed with local predator–prey dynamics and density–dependent dispersal. The simulation experiment suggests that connectivity levels at both extremes, representing very little risk and high risk of species mortality, do not augment the likelihood of coexistence while intermediate levels do. Furthermore, the probability of coexistence increases and spans a wide range of connectivity levels when individual dispersal is less probabilistic and more dependent on population feedback. Second, a novel approach to quantifying network structure is developed using the statistical method of moments. This measurement framework is then used to index habitat networks and assess their capacity to drive three main ecological processes: dispersal, survival, and coexistence. Results indicate that the moments approach outperforms single summary metrics and accounts for a majority of the variation in process outcomes. The hierarchical measurement scheme is helpful for indicating when additional structural information is needed to determine ecological function. However, the qualitative trend between network indicator and function is, at times, unintuitive and unstable in certain areas of the metric space.
ContributorsSalau, Kehinde Rilwan, 1985- (Author) / Janssen, Marco A (Thesis advisor) / Fenichel, Eli P (Thesis advisor) / Anderies, John M (Committee member) / Abbott, Joshua K (Committee member) / Arizona State University (Publisher)
Created2013
151048-Thumbnail Image.png
Description
A sequence of models is developed to describe urban population growth in the context of the embedded physical, social and economic environments and an urban disease are developed. This set of models is focused on urban growth and the relationship between the desire to move and the utility derived from

A sequence of models is developed to describe urban population growth in the context of the embedded physical, social and economic environments and an urban disease are developed. This set of models is focused on urban growth and the relationship between the desire to move and the utility derived from city life. This utility is measured in terms of the economic opportunities in the city, the level of human constructed amenity, and the level of amenity caused by the natural environment. The set of urban disease models is focused on examining prospects of eliminating a disease for which a vaccine does not exist. It is inspired by an outbreak of the vector-borne disease dengue fever in Peru, during 2000-2001.
ContributorsMurillo, D (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Anderies, John M (Thesis advisor) / Boone, Christopher (Committee member) / Arizona State University (Publisher)
Created2012
149374-Thumbnail Image.png
Description

River and riparian areas are important foraging habitat for insectivorous bats. Numerous studies have shown that aquatic insects provide an important trophic resource to terrestrial consumers, including bats, and are key in regulating population size and species interactions in terrestrial food webs. Yet these studies have generally ignored how structural

River and riparian areas are important foraging habitat for insectivorous bats. Numerous studies have shown that aquatic insects provide an important trophic resource to terrestrial consumers, including bats, and are key in regulating population size and species interactions in terrestrial food webs. Yet these studies have generally ignored how structural characteristics of the riverine landscape influence trophic resource availability or how terrestrial consumers respond to ensuing spatial and temporal patterns of trophic resources. Moreover, few studies have examined linkages between a stream's hydrologic regime and the timing and magnitude of aquatic insect availability. The main objective of my dissertation is to understand the causes of bat distributions in space and time. Specifically, I examine how trophic resource availability, structural components of riverine landscapes (channel confinement and riparian vegetation structure), and hydrologic regimes (flow permanence and timing of floods) mediate spatial and temporal patterns in bat activity. First, I show that river channel confinement determines bat activity along a river's longitudinal axis (directly above the river), while trophic resources appear to have stronger effects across a river's lateral (with distance from the river) axis. Second, I show that flow intermittency affects bat foraging activity indirectly via its effects on trophic resource availability. Seasonal river drying appears to have complex effects on bat foraging activity, initially causing imperfect tracking by consumers of localized concentrations of resources but later resulting in disappearance of both insects and bats after complete river drying. Third, I show that resource tracking by bats varies among streams with contrasting patterns of trophic resource availability and this variation appears to be in response to differences in the timing of aquatic insect emergence, duration and magnitude of emergence, and adult body size of emergent aquatic insects. Finally, I show that aquatic insects directly influence bat activity along a desert stream and that riparian vegetation composition affects bat activity, but only indirectly, via effects on aquatic insect availability. Overall, my results show river channel confinement, riparian vegetation structure, flow permanence, and the timing of floods influence spatial and temporal patterns in bat distributions; but these effects are indirect by influencing the ability of bats to track trophic resources in space and time.

ContributorsHagen, Elizabeth M (Author) / Sabo, John L (Thesis advisor) / Fisher, Stuart G. (Committee member) / Grimm, Nancy (Committee member) / Schmeeckle, Mark W (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2010
149521-Thumbnail Image.png
Description

More than half of all accessible freshwater has been appropriated for human use, and a substantial portion of terrestrial ecosystems have been transformed by human action. These impacts are heaviest in urban ecosystems, where impervious surfaces increase runoff, water delivery and stormflows are managed heavily, and there are substantial anthropogenic

More than half of all accessible freshwater has been appropriated for human use, and a substantial portion of terrestrial ecosystems have been transformed by human action. These impacts are heaviest in urban ecosystems, where impervious surfaces increase runoff, water delivery and stormflows are managed heavily, and there are substantial anthropogenic sources of nitrogen (N). Urbanization also frequently results in creation of intentional novel ecosystems. These "designed" ecosystems are fashioned to fulfill particular needs of the residents, or ecosystem services. In the Phoenix, Arizona area, the augmentation and redistribution of water has resulted in numerous component ecosystems that are atypical for a desert environment. Because these systems combine N loading with the presence of water, they may be hot spots of biogeochemical activity. The research presented here illustrates the types of hydrological modifications typical of desert cities and documents the extent and distribution of common designed aquatic ecosystems in the Phoenix metropolitan area: artificial lakes and stormwater retention basins. While both ecosystems were designed for other purposes (recreation/aesthetics and flood abatement, respectively), they have the potential to provide the added ecosystem service of N removal via denitrification. However, denitrification in urban lakes is likely to be limited by the rate of diffusion of nitrate into the sediment. Retention basins export some nitrate to groundwater, but grassy basins have higher denitrification rates than xeriscaped ones, due to higher soil moisture and organic matter content. An economic valuation of environmental amenities demonstrates the importance of abundant vegetation, proximity to water, and lower summer temperatures throughout the region. These amenities all may be provided by designed, water-intensive ecosystems. Some ecosystems are specifically designed for multiple uses, but maximizing one ecosystem service often entails trade-offs with other services. Further investigation into the distribution, bundling, and tradeoffs among water-related ecosystem services shows that some types of services are constrained by the hydrogeomorphology of the area, while for others human engineering and the creation of designed ecosystems has enabled the delivery of hydrologic ecosystem services independent of natural constraints.

ContributorsLarson, Elisabeth Knight (Author) / Grimm, Nancy (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Fisher, Stuart G. (Committee member) / Anderies, John M (Committee member) / Lohse, Kathleen A (Committee member) / Arizona State University (Publisher)
Created2010
149407-Thumbnail Image.png
Description
This study investigates the vulnerability of subsistence agriculturalists to food shortfalls associated with dry periods. I approach this effort by evaluating prominent and often implicit conceptual models of vulnerability to dry periods used by archaeologists and other scholars investigating past human adaptations in dry climates. The conceptual models

This study investigates the vulnerability of subsistence agriculturalists to food shortfalls associated with dry periods. I approach this effort by evaluating prominent and often implicit conceptual models of vulnerability to dry periods used by archaeologists and other scholars investigating past human adaptations in dry climates. The conceptual models I evaluate rely on an assumption of regional-scale resource marginality and emphasize the contribution of demographic conditions (settlement population levels and watershed population density) and environmental conditions (settlement proximity to perennial rivers and annual precipitation levels) to vulnerability to dry periods. I evaluate the models and the spatial scales they might apply by identifying the extent to which these conditions influenced the relationship between dry-period severity and residential abandonment in central Arizona from A.D. 1200 to 1450. I use this long-term relationship as an indicator of potential vulnerability to dry periods. I use tree-ring precipitation and streamflow reconstructions to identify dry periods. Critically examining the relationship between precipitation conditions and residential abandonment potentially sparked by the risk of food shortfalls due to demographic and environmental conditions is a necessary step toward advancing understanding of the influences of changing climate conditions on human behavior. Results of this study support conceptual models that emphasize the contribution of high watershed population density and watershed-scale population-resource imbalances to relatively high vulnerability to dry periods. Models that emphasize the contribution of: (1) settlement population levels, (2) settlement locations distant from perennial rivers, (3) settlement locations in areas of low average annual precipitation; and (4) settlement-scale population-resource imbalances to relatively high vulnerability to dry periods are, however, not supported. Results also suggest that people living in watersheds with the greatest access to and availability of water were the most vulnerable to dry periods, or at least most likely to move when confronted with dry conditions. Thus, commonly held assumptions of differences in vulnerability due to settlement population levels and inherently water poor conditions are not supported. The assumption of regional-scale resource marginality and widespread vulnerability to dry periods in this region of the U.S. Southwest is also not consistently supported throughout the study area.
ContributorsIngram, Scott Eric (Author) / Nelson, Margaret C. (Thesis advisor) / Abbott, David R. (Committee member) / Kintigh, Keith W. (Committee member) / Kinzig, Ann P. (Committee member) / Redman, Charles L. (Committee member) / Arizona State University (Publisher)
Created2010
152191-Thumbnail Image.png
Description
Epidemiological theory normally does not predict host extinction from infectious disease because of a host density threshold below which pathogens cannot persist. However, host extinction can occur when a biotic or abiotic pathogen reservoir allows for density-independent transmission. Amphibians are facing global population decline and extinction from the emerging infectious

Epidemiological theory normally does not predict host extinction from infectious disease because of a host density threshold below which pathogens cannot persist. However, host extinction can occur when a biotic or abiotic pathogen reservoir allows for density-independent transmission. Amphibians are facing global population decline and extinction from the emerging infectious disease chytridiomycosis, caused by the fungus Batrachochytrium dentrobatidis (Bd). I use the model species Eleutherodactylus coqui to assess the impact of Bd on terrestrial direct-developing frog species, a common life history in the tropics. I tested the importance of two key factors that might influence this impact and then used laboratory experiments and published field data to model population-level impacts of Bd on E. coqui. First, I assessed the ontogenetic susceptibility of E. coqui by exposing juvenile and adult frogs to the same pathogen strain and dose. Juveniles exposed to Bd had significantly lower survival rates compared with control juveniles, while adult frogs often cleared infection. Second, I conducted experiments to determine whether E. coqui can become infected with Bd indirectly from contact with zoospores shed onto vegetation by an infected frog and from direct exposure to an infected frog. Both types of transmission were observed, making this the first demonstration that amphibians can become infected indirectly in non-aquatic habitats. Third, I tested the hypothesis that artificially-maintained cultures of Bd attenuate in pathogenicity, an effect known for other fungal pathogens. Comparing two cultures of the same Bd strain with different passage histories revealed reduced zoospore production and disease-induced mortality rates for a susceptible frog species (Atelopus zeteki) but not for the less-susceptible E. coqui. Finally, I used a mathematical model to project the population-level impacts of chytridiomycosis on E. coqui. Model analysis showed that indirect transmission, combined with either a high rate of zoospore production or low rate of zoospore mortality, is required for Bd to drive E. coqui populations below an extinction threshold. High rates of transmission plus frequent re-infection could lead to poor recruitment of infected juveniles and population decline. My research adds further insight into how emerging infectious disease is contributing to the loss of amphibian biodiversity.
ContributorsLanghammer, Penny F. (Author) / Collins, James P. (Thesis advisor) / Brooks, Thomas M (Committee member) / Burrowes, Patricia A. (Committee member) / Anderies, John M (Committee member) / Escalante, Ananias A (Committee member) / Smith, Andrew T. (Committee member) / Arizona State University (Publisher)
Created2013
157023-Thumbnail Image.png
Description
Design is a fundamental human activity through which we attempt to navigate and manipulate the world around us for our survival, pleasure, and benefit. As human society has evolved, so too has the complexity and impact of our design activities on the environment. Now clearly intertwined as a complex social-ecological

Design is a fundamental human activity through which we attempt to navigate and manipulate the world around us for our survival, pleasure, and benefit. As human society has evolved, so too has the complexity and impact of our design activities on the environment. Now clearly intertwined as a complex social-ecological system at the global scale, we struggle in our ability to understand, design, implement, and manage solutions to complex global issues such as climate change, water scarcity, food security, and natural disasters. Some have asserted that this is because complex adaptive systems, like these, are moving targets that are only partially designed and partially emergent and self-organizing. Furthermore, these types of systems are difficult to understand and control due to the inherent dynamics of "wicked problems", such as: uncertainty, social dilemmas, inequities, and trade-offs involving multiple feedback loops that sometimes cause both the problems and their potential solutions to shift and evolve together. These problems do not, however, negate our collective need to effectively design, produce, and implement strategies that allow us to appropriate, distribute, manage and sustain the resources on which we depend. Design, however, is not well understood in the context of complex adaptive systems involving common-pool resources. In addition, the relationship between our attempts at control and performance at the system-level over time is not well understood either. This research contributes to our understanding of design in common-pool resource systems by using a multi-methods approach to investigate longitudinal data on an innovative participatory design intervention implemented in nineteen small-scale, farmer-managed irrigation systems in the Indrawati River Basin of Nepal over the last three decades. The intervention was intended as an experiment in using participatory planning, design and construction processes to increase food security and strengthen the self-sufficiency and self-governing capacity of resource user groups within the poorest district in Nepal. This work is the first time that theories of participatory design-processes have been empirically tested against longitudinal data on a number of small-scale, locally managed common-pool resource systems. It clarifies and helps to develop a theory of design in this setting for both scientific and practical purposes.
ContributorsRatajczyk, Elicia Beth (Author) / Anderies, John M (Thesis advisor) / York, Abigail (Committee member) / Shivakoti, Ganesh P (Committee member) / Arizona State University (Publisher)
Created2018