Matching Items (17)
92-Thumbnail Image.png
Description

As technologies rapidly progress, there is growing evidence that our civil infrastructure do not have the capacity to adaptively and reliably deliver services in the face of rapid changes in demand, conditions of service, and environmental conditions. Infrastructure are facing multiple challenges including inflexible physical assets, unstable and insufficient funding,

As technologies rapidly progress, there is growing evidence that our civil infrastructure do not have the capacity to adaptively and reliably deliver services in the face of rapid changes in demand, conditions of service, and environmental conditions. Infrastructure are facing multiple challenges including inflexible physical assets, unstable and insufficient funding, maturation, utilization, increasing interdependencies, climate change, social and environmental awareness, changes in coupled technology systems, lack of transdisciplinary expertise, geopolitical security, and wicked complexity. These challenges are interrelated and several produce non-stationary effects. Successful infrastructure in the twenty-first century will need to be flexible and agile. Drawing from other industries, we provide recommendations for competencies to realize flexibility and agility: roadmapping, focus on software over hardware, resilience-based thinking, compatibility, connectivity, and modularity of components, organic and change-oriented management, and transdisciplinary education. First, we will need to understand how non-technical and technical forces interact to lock in infrastructure, and create path dependencies.

This report has been advanced to a peer-reviewed journal publication:
Mikhail Chester and Braden Allenby, 2008, Toward adaptive infrastructure: flexibility and agility in a non-stationarity age, Sustainable and Resilient Infrastructure, pp. 1-19, DOI: 10.1080/23789689.2017.1416846.

151922-Thumbnail Image.png
Description
Residential energy consumption accounts for 22% of the total energy use in the United States. The consumer's perception of energy usage and conservation are very inaccurate which is leading to growing number of individuals who try to seek out ways to use energy more wisely. Hence behavioral change in consumers

Residential energy consumption accounts for 22% of the total energy use in the United States. The consumer's perception of energy usage and conservation are very inaccurate which is leading to growing number of individuals who try to seek out ways to use energy more wisely. Hence behavioral change in consumers with respect to energy use, by providing energy use feedback may be important in reducing home energy consumption. Real-time energy information feedback delivered via technology along with feedback interventions has been reported to produce up to 20 percent declines in residential energy consumption through past research and pilot studies. There are, however, large differences in the estimates of the effect of these different types of feedback on energy use. As part of the Energize Phoenix Program, (a U.S. Department of Energy funded program), a Dashboard Study was conducted by the Arizona State University to estimate the impact of real-time, home-energy displays in conjunction with other feedback interventions on the residential rate of energy consumption in Phoenix, while also creating awareness and encouragement to households to reduce energy consumption. The research evaluates the effectiveness of these feedback initiatives. In the following six months of field experiment, a selected number of low-income multi-family apartments in Phoenix, were divided in three groups of feedback interventions, where one group received residential energy use related education and information, the second group received the same education as well as was equipped with the in-home feedback device and the third was given the same education, the feedback device and added budgeting information. Results of the experiment at the end of the six months did not lend a consistent support to the results from literature and past pilot studies. The data revealed a statistically insignificant reduction in energy consumption for the experiment group overall and inconsistent results for individual households when compared to a randomly selected control sample. However, as per the participant survey results, the study proved effective to foster awareness among participating residents of their own patterns of residential electricity consumption and understanding of residential energy use related savings.
ContributorsRungta, Shaily (Author) / Bryan, Harvey (Thesis advisor) / Reddy, Agami (Committee member) / Webster, Aleksasha (Committee member) / Arizona State University (Publisher)
Created2013
152089-Thumbnail Image.png
Description
Water resource management is becoming increasingly burdened by uncertain and fluctuating conditions resulting from climate change and population growth which place increased demands on already strained resources. Innovative water management schemes are necessary to address the reality of available water supplies. One such approach is the substitution of trade in

Water resource management is becoming increasingly burdened by uncertain and fluctuating conditions resulting from climate change and population growth which place increased demands on already strained resources. Innovative water management schemes are necessary to address the reality of available water supplies. One such approach is the substitution of trade in virtual water for the use of local water supplies. This study provides a review of existing work in the use of virtual water and water footprint methods. Virtual water trade has been shown to be a successful method for addressing water scarcity and decreasing overall water consumption by shifting high water consumptive processes to wetter regions. These results however assume that all water resource supplies are equivalent regardless of physical location and they do not tie directly to economic markets. In this study we introduce a new mathematical framework, Embedded Resource Accounting (ERA), which is a synthesis of several different analytical methods presently used to quantify and describe human interactions with the economy and the natural environment. We define the specifics of the ERA framework in a generic context for the analysis of embedded resource trade in a way that links directly with the economics of that trade. Acknowledging the cyclical nature of water and the abundance of actual water resources on Earth, this study addresses fresh water availability within a given region. That is to say, the quantities of fresh water supplies annually available at acceptable quality for anthropogenic uses. The results of this research provide useful tools for water resource managers and policy makers to inform decision making on, (1) reallocation of local available fresh water resources, and (2) strategic supplementation of those resources with outside fresh water resources via the import of virtual water.
ContributorsAdams, Elizabeth Anne (Author) / Ruddell, Benjamin L (Thesis advisor) / Allenby, Braden R. (Thesis advisor) / Seager, Thomas P (Committee member) / Arizona State University (Publisher)
Created2013
150861-Thumbnail Image.png
Description
Electronic waste (E-waste) is a concern, because of the increasing volume of materials being disposed of. There are economical, social and environmental implications derived from these materials. For example, the international trade of used computers creates jobs, but the recovery from valuable materials is technically challenging and currently there are

Electronic waste (E-waste) is a concern, because of the increasing volume of materials being disposed of. There are economical, social and environmental implications derived from these materials. For example, the international trade of used computers creates jobs, but the recovery from valuable materials is technically challenging and currently there are environmental and health problems derived from inappropriate recycling practices. Forecasting the flows of used computers and e-waste materials supports the prevention of environmental impacts. However, the nature of these material flows is complex. There are technological geographical and cultural factors that affect how users purchase, store or dispose of their equipment. The result of these dynamics is a change in the composition and volume of these flows. Collectors are affected by these factors and the presence of markets, labor and transportation costs. In northern Mexico, there is an international flow of new and used computers between Mexico and the United States and an internal flow of materials and products among Mexican cities. In order to understand the behavior of these flows a field study was carried out in 8 different Mexican cities. Stake holders were interviewed and through a structured analysis the system and the relevant stakeholders were expressed as Data Flow Diagrams in order; to understand the critical parts from the system. The results show that Mexican cities have important qualitative differences. For example, location and size define the availability of resources to manage e-waste. Decisions to dispose a computer depend on international factors such as the price of new computers, but also on regional factors such as the cost to repair them. Decisions to store a computer depend on external factors such as markets, but also internal factors such as how users perceive the value of old equipment. E-waste collection depends on the value of e-waste, but also on costs to collect and extract value from them. The main implication is that a general policy base on how E-waste is managed at a big city might not be the most efficient for a small one. More over combining strengths from different cities might overcome respective weaknesses and create new opportunities; this integration can be stimulated by designing policies that consider diversity
ContributorsEstrada Ayub, Jesus Angel (Author) / Allenby, Braden R. (Thesis advisor) / Ramzy, Kahhat A (Thesis advisor) / Kahhat, Ramzy A (Committee member) / Williams, Eric (Committee member) / Arizona State University (Publisher)
Created2012
150762-Thumbnail Image.png
Description
Building Envelope includes walls, roofs and openings, which react to the outdoor environmental condition. Today, with the increasing use of glass in building envelope, the energy usage of the buildings is increasing, especially in the offices and commercial buildings. Use of right glass type and control triggers helps to optimize

Building Envelope includes walls, roofs and openings, which react to the outdoor environmental condition. Today, with the increasing use of glass in building envelope, the energy usage of the buildings is increasing, especially in the offices and commercial buildings. Use of right glass type and control triggers helps to optimize the energy use, by tradeoff between optical and thermal properties. The part of the research looks at the different control triggers and its range that governs the use of electrochromic glass to regulate the energy usage in building. All different control trigger that can be possibly used for regulating the clear and tint state of glass were analyzed with most appropriate range. Its range was triggered such that 80% time of the glass is trigger between the ranges. The other building parameters like window wall ratio and orientations were also investigated. The other half of the research study looks into the feasibility of using the Electrochromic windows, as it is ought to be the main factor governing the market usage of Electrochromic windows and to investigate the possible ways to make it feasible. Different LCC parameters were studied to make it market feasible product. This study shows that installing this technology with most appropriate trigger range can reduce annual building energy consumption from 6-8% but still cost of the technology is 3 times the ASHRAE glass, which results in 70-90 years of payback. This study concludes that south orientation saves up to 3-5% of energy and 4-6% of cooling tons while north orientation gives negligible saving using EC glass. LCC parameters show that there is relative change in increasing the net saving for different parameters but none except 50% of the present glass cost is the possible option where significant change is observed.
ContributorsMunshi, Kavish Prakash (Author) / Bryan, Harvey (Thesis advisor) / Reddy, Agami (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2012
150428-Thumbnail Image.png
Description
Evacuated tube solar thermal collector arrays have a wide range of applications. While most of these applications are limited in performance due to relatively low maximum operating temperatures, these collectors can still be useful in low grade thermal systems. An array of fifteen Apricus AP-30 evacuated tube collectors was designed,

Evacuated tube solar thermal collector arrays have a wide range of applications. While most of these applications are limited in performance due to relatively low maximum operating temperatures, these collectors can still be useful in low grade thermal systems. An array of fifteen Apricus AP-30 evacuated tube collectors was designed, assembled, and tested on the Arizona State University campus in Tempe, AZ. An existing system model was reprogrammed and updated for increased flexibility and ease of use. The model predicts the outlet temperature of the collector array based on the specified environmental conditions. The model was verified through a comparative analysis to the data collected during a three-month test period. The accuracy of this model was then compared against data calculated from the Solar Rating and Certification Corporation (SRCC) efficiency curve to determine the relative performance. It was found that both the original and updated models were able to generate reasonable predictions of the performance of the collector array with overall average percentage errors of 1.0% and 1.8%, respectively.
ContributorsStonebraker, Matthew (Author) / Phelan, Patrick (Thesis advisor) / Reddy, Agami (Committee member) / Bryan, Harvey (Committee member) / Arizona State University (Publisher)
Created2011
149515-Thumbnail Image.png
Description
With the increasing interest in energy efficient building design, whole building energy simulation programs are increasingly employed in the design process to help architects and engineers determine which design alternatives save energy and are cost effective. DOE-2 is one of the most popular programs used by the building energy simulation

With the increasing interest in energy efficient building design, whole building energy simulation programs are increasingly employed in the design process to help architects and engineers determine which design alternatives save energy and are cost effective. DOE-2 is one of the most popular programs used by the building energy simulation community. eQUEST is a powerful graphic user interface for the DOE-2 engine. EnergyPlus is the newest generation simulation program under development by the U.S. Department of Energy which adds new modeling features beyond the DOE-2's capability. The new modeling capabilities of EnergyPlus make it possible to model new and complex building technologies which cannot be modeled by other whole building energy simulation programs. On the other hand, EnergyPlus models, especially with a large number of zones, run much slower than those of eQUEST. Both eQUEST and EnergyPlus offer their own set of advantages and disadvantages. The choice of which building simulation program should be used might vary in each case. The purpose of this thesis is to investigate the potential of both the programs to do the whole building energy analysis and compare the results with the actual building energy performance. For this purpose the energy simulation of a fully functional building is done in eQUEST and EnergyPlus and the results were compared with utility data of the building to identify the degree of closeness with which simulation results match with the actual heat and energy flows in building. It was observed in this study that eQUEST is easy to use and quick in producing results that would especially help in the taking critical decisions during the design phase. On the other hand EnergyPlus aids in modeling complex systems, producing more accurate results, but consumes more time. The choice of simulation program might change depending on the usability and applicability of the program to our need in different phases of a building's lifecycle. Therefore, it makes sense if a common front end is designed for both these simulation programs thereby allowing the user to select either the DOE-2.2 engine or the EnergyPlus engine based upon the need in each particular case.
ContributorsRallapalli, Hema Sree (Author) / Bryan, Harvey (Thesis advisor) / Addison, Marlin (Committee member) / Reddy, Agami (Committee member) / Arizona State University (Publisher)
Created2010
149421-Thumbnail Image.png
Description
Phase Change Material (PCM) plays an important role as a thermal energy storage device by utilizing its high storage density and latent heat property. One of the potential applications for PCM is in buildings by incorporating them in the envelope for energy conservation. During the summer season, the benefits are

Phase Change Material (PCM) plays an important role as a thermal energy storage device by utilizing its high storage density and latent heat property. One of the potential applications for PCM is in buildings by incorporating them in the envelope for energy conservation. During the summer season, the benefits are a decrease in overall energy consumption by the air conditioning unit and a time shift in peak load during the day. Experimental work was carried out by Arizona Public Service (APS) in collaboration with Phase Change Energy Solutions (PCES) Inc. with a new class of organic-based PCM. This "BioPCM" has non-flammable properties and can be safely used in buildings. The experimental setup showed maximum energy savings of about 30%, a maximum peak load shift of ~ 60 min, and maximum cost savings of about 30%. Simulation was performed to validate the experimental results. EnergyPlus was chosen as it has the capability to simulate phase change material in the building envelope. The building material properties were chosen from the ASHRAE Handbook - Fundamentals and the HVAC system used was a window-mounted heat pump. The weather file used in the simulation was customized for the year 2008 from the National Renewable Energy Laboratory (NREL) website. All EnergyPlus inputs were ensured to match closely with the experimental parameters. The simulation results yielded comparable trends with the experimental energy consumption values, however time shifts were not observed. Several other parametric studies like varying PCM thermal conductivity, temperature range, location, insulation R-value and combination of different PCMs were analyzed and results are presented. It was found that a PCM with a melting point from 23 to 27 °C led to maximum energy savings and greater peak load time shift duration, and is more suitable than other PCM temperature ranges for light weight building construction in Phoenix.
ContributorsMuruganantham, Karthik (Author) / Phelan, Patrick (Thesis advisor) / Reddy, Agami (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2010
134553-Thumbnail Image.png
Description
The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a

The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a strong focal point is needed to concentrate incident solar irradiation on the small, high efficiency cells. The objective of this study was to evaluate and quantify tracking accuracy for a performance model which would apply to similar two-axis systems. An analysis comparing CPV to traditional solar photovoltaics from an economic standpoint was conducted as well to evaluate the viability of emerging CPV technology. The research was performed using two calibrated solar radiation sensors mounted on the plane of the tracking system, normal to the sun. One sensor is held at a constant, normal angle (0 degrees) and the other is varied by a known interior angle in the range of 0 degrees to 10 degrees. This was to study the magnitude of the decrease in in irradiance as the angle deviation increases. The results show that, as the interior angle increases, the solar irradiance and thus available power available on the focal point will decrease roughly at a parabolic rate, with a sharp cutoff point at angles greater than 5 degrees. These findings have a significant impact on CPV system tracking mechanisms, which require high precision tracking in order to perform as intended.
ContributorsPodzemny, Dominic James (Author) / Reddy, Agami (Thesis director) / Kelman, Jonathan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
157605-Thumbnail Image.png
Description

Thermal extremes are responsible for more than 90% of all weather-related deaths in the United States, with heat alone accounting for an annual death toll of 618. With the combination of global warming and urban expansion, cities are becoming hotter and the threat to the well-being of citizens in urban

Thermal extremes are responsible for more than 90% of all weather-related deaths in the United States, with heat alone accounting for an annual death toll of 618. With the combination of global warming and urban expansion, cities are becoming hotter and the threat to the well-being of citizens in urban areas is growing. Because people in modern societies (and in particular, vulnerable groups such as the elderly) spend most of their time inside their home, indoor exposure to heat is the underlying cause in a considerable fraction of heat-related morbidity and mortality. Notably, this can be observed in many US cities despite the high prevalence of mechanical air conditioning in the building stock. Therefore, part of the effort to reducing the overall vulnerability of urban populations to heat needs to be dedicated to understanding indoor exposure, its underlying behavioral and physical mechanisms, health outcomes, and possible mitigation strategies. This dissertation is an effort to advance the knowledge in these areas. The cities of Houston, TX, Phoenix, AZ, and Los Angeles, CA, are used as test beds to assess exposure and vulnerability to indoor heat among people 65 and older. Measurements and validated whole-building simulations were used in conjunction with heat-vulnerability surveys and epidemiological modelling (of collaborators) to (1) understand how building characteristics and practices govern indoor exposure to heat among the elderly; (2) evaluate mechanical air conditioning as a reliable protective factor against indoor exposure to heat; and (3) identify potential impacts from the evolving building stock and a warming urban climate. The results show strong associations between indoor heat exposure and certain health outcomes and highlight the vulnerability of elderly populations to heat despite the prevalence of air conditioning systems. Given the current construction practices and urban warming trends, this vulnerability will continue to grow. Therefore, policies promoting climate adaptive buildings features, as well as better access to reliable and affordable AC are needed. In addition, this research draws attention to the significant potential health consequences of large-scale power outages and proposes the implementation of passive survivability in regulations as one important preventative action.

ContributorsBaniassadi, Amir (Author) / Sailor, David (Thesis advisor) / Bryan, Harvey M (Committee member) / Reddy, Agami (Committee member) / Chester, Mikhail M (Committee member) / Arizona State University (Publisher)
Created2019