Matching Items (15)
152089-Thumbnail Image.png
Description
Water resource management is becoming increasingly burdened by uncertain and fluctuating conditions resulting from climate change and population growth which place increased demands on already strained resources. Innovative water management schemes are necessary to address the reality of available water supplies. One such approach is the substitution of trade in

Water resource management is becoming increasingly burdened by uncertain and fluctuating conditions resulting from climate change and population growth which place increased demands on already strained resources. Innovative water management schemes are necessary to address the reality of available water supplies. One such approach is the substitution of trade in virtual water for the use of local water supplies. This study provides a review of existing work in the use of virtual water and water footprint methods. Virtual water trade has been shown to be a successful method for addressing water scarcity and decreasing overall water consumption by shifting high water consumptive processes to wetter regions. These results however assume that all water resource supplies are equivalent regardless of physical location and they do not tie directly to economic markets. In this study we introduce a new mathematical framework, Embedded Resource Accounting (ERA), which is a synthesis of several different analytical methods presently used to quantify and describe human interactions with the economy and the natural environment. We define the specifics of the ERA framework in a generic context for the analysis of embedded resource trade in a way that links directly with the economics of that trade. Acknowledging the cyclical nature of water and the abundance of actual water resources on Earth, this study addresses fresh water availability within a given region. That is to say, the quantities of fresh water supplies annually available at acceptable quality for anthropogenic uses. The results of this research provide useful tools for water resource managers and policy makers to inform decision making on, (1) reallocation of local available fresh water resources, and (2) strategic supplementation of those resources with outside fresh water resources via the import of virtual water.
ContributorsAdams, Elizabeth Anne (Author) / Ruddell, Benjamin L (Thesis advisor) / Allenby, Braden R. (Thesis advisor) / Seager, Thomas P (Committee member) / Arizona State University (Publisher)
Created2013
152721-Thumbnail Image.png
Description
In vitro, or cultured, meat refers to edible skeletal muscle and fat tissue grown from animal stem cells in a laboratory or factory. It is essentially meat that does not require an animal to be killed. Although it is still in the research phase of development, claims of its potential

In vitro, or cultured, meat refers to edible skeletal muscle and fat tissue grown from animal stem cells in a laboratory or factory. It is essentially meat that does not require an animal to be killed. Although it is still in the research phase of development, claims of its potential benefits range from reducing the environmental impacts of food production to improving human health. However, technologies powerful enough to address such significant challenges often come with unintended consequences and a host of costs and benefits that seldom accrue to the same actors. In extreme cases, they can even be destabilizing to social, institutional, economic, and cultural systems. This investigation explores the sustainability implications of cultured meat before commercial facilities are established, unintended consequences are realized, and undesirable effects become reified and locked in. The study utilizes expert focus groups to explore the social implications, life cycle analysis to project the environmental implications, and economic input-output assessment to explore tradeoffs between conventionally-produced meat and factory-grown food products. The results suggest that, should cultured meat be widely adopted by consumers, food is likely to be increasingly a product of human design, perhaps becoming integrated into existing human institutions such as health care delivery and education. Environmentally, cultured meat could require smaller quantities of agricultural inputs and land than livestock. However, those avoided costs could come at the expense of more intensive energy use as biological processes are replaced with industrial systems. Finally, the research found that, since livestock production is a driver of significant economic activity, shifting away from traditional meat production in favor of cultured meat production could result in a net economic contraction.
ContributorsMattick, Carolyn Sue (Author) / Allenby, Braden R. (Thesis advisor) / Landis, Amy E. (Committee member) / Wetmore, Jameson M. (Committee member) / Arizona State University (Publisher)
Created2014
150861-Thumbnail Image.png
Description
Electronic waste (E-waste) is a concern, because of the increasing volume of materials being disposed of. There are economical, social and environmental implications derived from these materials. For example, the international trade of used computers creates jobs, but the recovery from valuable materials is technically challenging and currently there are

Electronic waste (E-waste) is a concern, because of the increasing volume of materials being disposed of. There are economical, social and environmental implications derived from these materials. For example, the international trade of used computers creates jobs, but the recovery from valuable materials is technically challenging and currently there are environmental and health problems derived from inappropriate recycling practices. Forecasting the flows of used computers and e-waste materials supports the prevention of environmental impacts. However, the nature of these material flows is complex. There are technological geographical and cultural factors that affect how users purchase, store or dispose of their equipment. The result of these dynamics is a change in the composition and volume of these flows. Collectors are affected by these factors and the presence of markets, labor and transportation costs. In northern Mexico, there is an international flow of new and used computers between Mexico and the United States and an internal flow of materials and products among Mexican cities. In order to understand the behavior of these flows a field study was carried out in 8 different Mexican cities. Stake holders were interviewed and through a structured analysis the system and the relevant stakeholders were expressed as Data Flow Diagrams in order; to understand the critical parts from the system. The results show that Mexican cities have important qualitative differences. For example, location and size define the availability of resources to manage e-waste. Decisions to dispose a computer depend on international factors such as the price of new computers, but also on regional factors such as the cost to repair them. Decisions to store a computer depend on external factors such as markets, but also internal factors such as how users perceive the value of old equipment. E-waste collection depends on the value of e-waste, but also on costs to collect and extract value from them. The main implication is that a general policy base on how E-waste is managed at a big city might not be the most efficient for a small one. More over combining strengths from different cities might overcome respective weaknesses and create new opportunities; this integration can be stimulated by designing policies that consider diversity
ContributorsEstrada Ayub, Jesus Angel (Author) / Allenby, Braden R. (Thesis advisor) / Ramzy, Kahhat A (Thesis advisor) / Kahhat, Ramzy A (Committee member) / Williams, Eric (Committee member) / Arizona State University (Publisher)
Created2012
154076-Thumbnail Image.png
Description
Fossil resources have enabled the development of the plastic industry in the last century. More recently biopolymers have been making gains in the global plastics market. Biopolymers are plastics derived from plants, primarily corn, which can function very similarly to fossil based plastics. One difference between some of the dominant

Fossil resources have enabled the development of the plastic industry in the last century. More recently biopolymers have been making gains in the global plastics market. Biopolymers are plastics derived from plants, primarily corn, which can function very similarly to fossil based plastics. One difference between some of the dominant biopolymers, namely polylactic acid and thermoplastic starch, and the most common fossil-based plastics is the feature of compostability. This means that biopolymers represent not only a shift from petroleum and natural gas to agricultural resources but also that these plastics have potentially different impacts resulting from alternative disposal routes. The current end of life material flows are not well understood since waste streams vary widely based on regional availability of end of life treatments and the role that decision making has on waste identification and disposal.

This dissertation is focused on highlighting the importance of end of life on the life-cycle of biopolymers, identifying how compostable biopolymer products are entering waste streams, improving collection and waste processing, and quantifying the impacts that result from the disposal of biopolymers. Biopolymers, while somewhat available to residential consumers, are primarily being used by various food service organizations trying to achieve a variety of goals such as zero waste, green advertising, and providing more consumer options. While compostable biopolymers may be able to help reduce wastes to landfill they do result in environmental tradeoffs associated with agriculture during the production phase. Biopolymers may improve the management for compostable waste streams by enabling streamlined services and reducing non-compostable fossil-based plastic contamination. The concerns about incomplete degradation of biopolymers in composting facilities may be ameliorated using alkaline amendments sourced from waste streams of other industries. While recycling still yields major benefits for traditional resins, bio-based equivalents may provide addition benefits and compostable biopolymers offer benefits with regards to global warming and fossil fuel depletion. The research presented here represents two published studies, two studies which have been accepted for publication, and a life-cycle assessment that will be submitted for publication.
ContributorsHottle, Troy A (Author) / Landis, Amy E. (Thesis advisor) / Allenby, Braden R. (Thesis advisor) / Bilec, Melissa M (Committee member) / Arizona State University (Publisher)
Created2015
153951-Thumbnail Image.png
Description
Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These

Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These challenges can be addressed by integrating sustainability grand challenges into engineering curriculum.

Two main strategies have emerged for integrating sustainability grand challenges. In the stand-alone course method, engineering programs establish one or two distinct courses that address sustainability grand challenges in depth. In the module method, engineering programs integrate sustainability grand challenges throughout existing courses. Neither method has been assessed in the literature.

This thesis aimed to develop sustainability modules, to create methods for evaluating the modules’ effectiveness on student cognitive and affective outcomes, to create methods for evaluating students’ cumulative sustainability knowledge, and to evaluate the stand-alone course method to integrate sustainability grand challenges into engineering curricula via active and experiential learning.

The Sustainable Metrics Module for teaching sustainability concepts and engaging and motivating diverse sets of students revealed that the activity portion of the module had the greatest impact on learning outcome retention.

The Game Design Module addressed methods for assessing student mastery of course content with student-developed games indicated that using board game design improved student performance and increased student satisfaction.

Evaluation of senior design capstone projects via novel comprehensive rubric to assess sustainability learned over students’ curriculum revealed that students’ performance is primarily driven by their instructor’s expectations. The rubric provided a universal tool for assessing students’ sustainability knowledge and could also be applied to sustainability-focused projects.

With this in mind, engineering educators should pursue modules that connect sustainability grand challenges to engineering concepts, because student performance improves and students report higher satisfaction. Instructors should utilize pedagogies that engage diverse students and impact concept retention, such as active and experiential learning. When evaluating the impact of sustainability in the curriculum, innovative assessment methods should be employed to understand student mastery and application of course concepts and the impacts that topics and experiences have on student satisfaction.
ContributorsAntaya, Claire Louise (Author) / Landis, Amy E. (Thesis advisor) / Parrish, Kristen (Thesis advisor) / Bilec, Melissa M (Committee member) / Besterfield-Sacre, Mary E (Committee member) / Allenby, Braden R. (Committee member) / Arizona State University (Publisher)
Created2015
156680-Thumbnail Image.png
Description
One of the key infrastructures of any community or facility is the energy system which consists of utility power plants, distributed generation technologies, and building heating and cooling systems. In general, there are two dimensions to “sustainability” as it applies to an engineered system. It needs to be designed, operated,

One of the key infrastructures of any community or facility is the energy system which consists of utility power plants, distributed generation technologies, and building heating and cooling systems. In general, there are two dimensions to “sustainability” as it applies to an engineered system. It needs to be designed, operated, and managed such that its environmental impacts and costs are minimal (energy efficient design and operation), and also be designed and configured in a way that it is resilient in confronting disruptions posed by natural, manmade, or random events. In this regard, development of quantitative sustainability metrics in support of decision-making relevant to design, future growth planning, and day-to-day operation of such systems would be of great value. In this study, a pragmatic performance-based sustainability assessment framework and quantitative indices are developed towards this end whereby sustainability goals and concepts can be translated and integrated into engineering practices.

New quantitative sustainability indices are proposed to capture the energy system environmental impacts, economic performance, and resilience attributes, characterized by normalized environmental/health externalities, energy costs, and penalty costs respectively. A comprehensive Life Cycle Assessment is proposed which includes externalities due to emissions from different supply and demand-side energy systems specific to the regional power generation energy portfolio mix. An approach based on external costs, i.e. the monetized health and environmental impacts, was used to quantify adverse consequences associated with different energy system components.

Further, this thesis also proposes a new performance-based method for characterizing and assessing resilience of multi-functional demand-side engineered systems. Through modeling of system response to potential internal and external failures during different operational temporal periods reflective of diurnal variation in loads and services, the proposed methodology quantifies resilience of the system based on imposed penalty costs to the system stakeholders due to undelivered or interrupted services and/or non-optimal system performance.

A conceptual diagram called “Sustainability Compass” is also proposed which facilitates communicating the assessment results and allow better decision-analysis through illustration of different system attributes and trade-offs between different alternatives. The proposed methodologies have been illustrated using end-use monitored data for whole year operation of a university campus energy system.
ContributorsMoslehi, Salim (Author) / Reddy, T. Agami (Thesis advisor) / Lackner, Klaus S (Committee member) / Parrish, Kristen (Committee member) / Pendyala, Ram M. (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2018
154731-Thumbnail Image.png
Description
Carbon dioxide (CO2) is one of the most dangerous greenhouse gas. Its concentration in the atmosphere has increased to very high levels since the industrial revolution. This continues to be a threat due to increasing energy demands. 60% of the worlds global emissions come from automobiles and other such moving

Carbon dioxide (CO2) is one of the most dangerous greenhouse gas. Its concentration in the atmosphere has increased to very high levels since the industrial revolution. This continues to be a threat due to increasing energy demands. 60% of the worlds global emissions come from automobiles and other such moving sources. Hence, to stay within safe limits, it is extremely important to curb current emissions and remove those which have already been emitted. Out of many available technologies, one such technology is the moisture swing based air capture technology that makes use of resin material that absorbs CO2 when it is dry and releases it when it is wet. A mathematical model was developed to better understand the mechanism of this process. In order to validate this model, numerical simulation and experimentation was done. Once the mechanism was proved, it was seen that there are many factors and parameters that govern this process. Some of these do not have definite value. To find the best fit value for these parameters, an optimized fitting routine needs to be developed that can minimize the standard deviation of the error. This thesis looks into ways in which the optimization of parameters can be done and the possible future work by using substantial data.
ContributorsChopra, Vinuta (Author) / Lackner, Klaus S (Thesis advisor) / Fox, Peter (Committee member) / Wright, Allen (Committee member) / Arizona State University (Publisher)
Created2016
154826-Thumbnail Image.png
Description
'Attributional' Life Cycle Assessment (LCA) quantitatively tracks the potential environmental impacts of international value chains, in retrospective, while ensuring that burden shifting is avoided. Despite the growing popularity of LCA as a decision-support tool, there are numerous concerns relating to uncertainty and variability in LCA that affects its reliability and

'Attributional' Life Cycle Assessment (LCA) quantitatively tracks the potential environmental impacts of international value chains, in retrospective, while ensuring that burden shifting is avoided. Despite the growing popularity of LCA as a decision-support tool, there are numerous concerns relating to uncertainty and variability in LCA that affects its reliability and credibility. It is pertinent that some part of future research in LCA be guided towards increasing reliability and credibility for decision-making, while utilizing the LCA framework established by ISO 14040.

In this dissertation, I have synthesized the present state of knowledge and application of uncertainty and variability in ‘attributional’ LCA, and contribute to its quantitative assessment.

Firstly, the present state of addressment of uncertainty and variability in LCA is consolidated and reviewed. It is evident that sources of uncertainty and variability exist in the following areas: ISO standards, supplementary guides, software tools, life cycle inventory (LCI) databases, all four methodological phases of LCA, and use of LCA information. One source of uncertainty and variability, each, is identified, selected, quantified, and its implications discussed.

The use of surrogate LCI data in lieu of missing dataset(s) or data-gaps is a source of uncertainty. Despite the widespread use of surrogate data, there has been no effort to (1) establish any form of guidance for the appropriate selection of surrogate data and, (2) estimate the uncertainty associated with the choice and use of surrogate data. A formal expert elicitation-based methodology to select the most appropriate surrogates and to quantify the associated uncertainty was proposed and implemented.

Product-evolution in a non-uniform manner is a source of temporal variability that is presently not considered in LCA modeling. The resulting use of outdated LCA information will lead to misguided decisions affecting the issue at concern and eventually the environment. In order to demonstrate product-evolution within the scope of ISO 14044, and given that variability cannot be reduced, the sources of product-evolution were identified, generalized, analyzed and their implications (individual and coupled) on LCA results are quantified.

Finally, recommendations were provided for the advancement of robustness of 'attributional' LCA, with respect to uncertainty and variability.
ContributorsSubramanian, Vairavan (Author) / Golden, Jay S (Thesis advisor) / Chester, Mikhail V (Thesis advisor) / Allenby, Braden R. (Committee member) / Dooley, Kevin J (Committee member) / Arizona State University (Publisher)
Created2016
187409-Thumbnail Image.png
Description
This paper will explore the existing relationship between direct air capture (DAC)technology and energy justice (EJ) principles. As DAC is a nascent technology that is transitioning from the R&D phase to the deployment phase, a standard for typical scaling practices has not yet been established. Additionally, since the industry of DAC aims

This paper will explore the existing relationship between direct air capture (DAC)technology and energy justice (EJ) principles. As DAC is a nascent technology that is transitioning from the R&D phase to the deployment phase, a standard for typical scaling practices has not yet been established. Additionally, since the industry of DAC aims to capture at least 10 gigatonnes of carbon dioxide per year by 2050, and at least 20 Gt/yr by 2100, the scaling practices of this technology will have a significant impact on communities around the world. Therefore, in this thesis I argue that if DAC is not scaled equitably, it will negatively impact the communities hosting the technology, and would develop a negative reputation which could slow down the overall scaling process. On the flip side, if DAC is scaled equitably, then it could create a positive effect by being deployed in underserved and marginalized communities and providing an economic benefit. This could result in DAC having a positive reputation and scaling more rapidly. In order to understand how the field viewed the integration of EJ principles into the scaling process, I interviewed representatives from DAC companies, experts in energy justice from NGOs and academia, and local government officials. These interviews were semi-structured, open-ended and conducted anonymously. Through these interviews I was able to refine my arguments and put forward a set of guidelines that the industry could use to scale DAC with equity and justice as core principles.
ContributorsSriramprasad, Vishrudh (Author) / Lackner, Klaus S (Thesis advisor) / Miller, Clark (Committee member) / Green, Matt (Committee member) / Hanemann, Michael (Committee member) / Arizona State University (Publisher)
Created2023
171453-Thumbnail Image.png
Description
CO2 capture from ambient air (often referred to as direct air capture or DAC) is one of the Carbon Dioxide Removal methodologies that may limit Global Warming. High energy demand and high cost are currently serious barriers for large-scale DAC deployments. Moisture-controlled CO2 sorption is a novel technology for DAC,

CO2 capture from ambient air (often referred to as direct air capture or DAC) is one of the Carbon Dioxide Removal methodologies that may limit Global Warming. High energy demand and high cost are currently serious barriers for large-scale DAC deployments. Moisture-controlled CO2 sorption is a novel technology for DAC, where CO2 sorption cycles are driven solely by changes in surrounding humidity. In contrast to traditional temperature-swing adsorption cycles, water is a cheaper source of exergy than high-grade heat or electricity and moisture-controlled CO2 sorption may reduce the cost of DAC. However, analytic models that describe this sorption system have not been well established, especially in a quantitative manner. In this dissertation the author first establishes both static and kinetic models analytically with bottom-up approaches from the governing equations. These models are of scientific interest and also of industrial importance. They were validated by literature data and custom experiments. In a second part of the dissertation, the author explores the application of moisture-controlled materials in the form of membranes that actively pump CO2 against a concentration gradient. These explorations are guided by the quantitative models developed in the first part of the dissertation. In CO2 separation technologies relying on actively pumping membranes, a moisture-controlled CO2 sorbent is used as either a gas-gas membrane contactor or a gas-liquid membrane contactor. The author experimentally and theoretically determined that a specific commercial anion exchange membrane that was considered a plausible candidate does not satisfy the requirements for such an active membrane as a consequence of its slow kinetics of carbon transport. Requirements for materials to serve as active membranes have been clarified, which is of great interest for industrial application and will provide a starting point for future material design and development.
ContributorsKaneko, Yuta (Author) / Lackner, Klaus S (Thesis advisor) / Green, Matthew D (Thesis advisor) / Dirks, Gary W (Committee member) / Wade, Jennifer L (Committee member) / Freeman, Benny D (Committee member) / Arizona State University (Publisher)
Created2022