Matching Items (90)
150452-Thumbnail Image.png
Description
The goal of this thesis is to test whether Alzheimer's disease (AD) is associated with distinctive humoral immune changes that can be detected in plasma and tracked across time. This is relevant because AD is the principal cause of dementia, and yet, no specific diagnostic tests are universally employed in

The goal of this thesis is to test whether Alzheimer's disease (AD) is associated with distinctive humoral immune changes that can be detected in plasma and tracked across time. This is relevant because AD is the principal cause of dementia, and yet, no specific diagnostic tests are universally employed in clinical practice to predict, diagnose or monitor disease progression. In particular, I describe herein a proteomic platform developed at the Center for Innovations in Medicine (CIM) consisting of a slide with 10.000 random-sequence peptides printed on its surface, which is used as the solid phase of an immunoassay where antibodies of interest are allowed to react and subsequently detected with a labeled secondary antibody. The pattern of antibody binding to the microarray is unique for each individual animal or person. This thesis will evaluate the versatility of the microarray platform and how it can be used to detect and characterize the binding patterns of antibodies relevant to the pathophysiology of AD as well as the plasma samples of animal models of AD and elderly humans with or without dementia. My specific aims were to evaluate the emergence and stability of immunosignature in mice with cerebral amyloidosis, and characterize the immunosignature of humans with AD. Plasma samples from APPswe/PSEN1-dE9 transgenic mice were evaluated longitudinally from 2 to 15 months of age to compare the evolving immunosignature with non-transgenic control mice. Immunological variation across different time-points was assessed, with particular emphasis on time of emergence of a characteristic pattern. In addition, plasma samples from AD patients and age-matched individuals without dementia were assayed on the peptide microarray and binding patterns were compared. It is hoped that these experiments will be the basis for a larger study of the diagnostic merits of the microarray-based immunoassay in dementia clinics.
ContributorsRestrepo Jimenez, Lucas (Author) / Johnston, Stephen A. (Thesis advisor) / Chang, Yung (Committee member) / Reiman, Eric (Committee member) / Sierks, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150424-Thumbnail Image.png
Description
The Philadelphia chromosome in humans, is on oncogenic translocation between chromosomes 9 and 22 that gives rise to the fusion protein BCR-Abl. This protein is constitutively active resulting in rapid and uncontrolled cell growth in affected cells. The BCR-Abl protein is the hallmark feature of chronic myeloid leukemia (CML) and

The Philadelphia chromosome in humans, is on oncogenic translocation between chromosomes 9 and 22 that gives rise to the fusion protein BCR-Abl. This protein is constitutively active resulting in rapid and uncontrolled cell growth in affected cells. The BCR-Abl protein is the hallmark feature of chronic myeloid leukemia (CML) and is seen in Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) cases. Currently, the first line of treatment is the Abl specific inhibitor Imatinib. Some patients will, however, develop resistance to Imatinib. Research has shown how transformation of progenitor B cells with v-Abl, an oncogene expressed by the Abelson murine leukemia virus, causes rapid proliferation, prevents further differentiation and produces a potentially malignant transformation. We have used progenitor B cells transformed with a temperature-sensitive form of the v-Abl protein that allows us to inactivate or re-activate v-Abl by shifting the incubation temperature. We are trying to use this line as a model to study both the progression from pre-malignancy to malignancy in CML and Imatinib resistance in Ph+ ALL and CML. These progenitor B cells, once v-Abl is reactivated, in most cases, will not return to their natural cell cycle. In this they resemble Ph+ ALL and CML under Imatinib treatment. With some manipulation these cells can break this prolonged G1 arrested phenotype and become a malignant cell line and resistant to Imatinib treatment. Cellular senescence can be a complicated process requiring inter-play between a variety of players. It serves as an alternate option to apoptosis, in that the cell loses proliferative potential, but does not die. Treatment with some cancer therapeutics will induce senescence in some cancers. Such is the case with Imatinib treatment of CML and Ph+ ALL. By using the S9 cell line we have been able to explore the possible routes for breaking of prolonged G1 arrest in these Ph+ leukemias. We inhibited the DNA damage sensor protein ataxia telangiectasia mutated (ATM) and found that prolonged G1 arrest in our S9 cells was broken. While previous research has suggested that the DNA damage sensor protein ataxia-telangiectasia mutated (ATM) has little impact in CML, our research indicates that ATM may play a role in either senescence induction or release.
ContributorsDixon, Sarah E (Author) / Chang, Yung (Thesis advisor) / Clark-Curtiss, Josephine (Committee member) / Touchman, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2011
150474-Thumbnail Image.png
Description
Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult

Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult phenotype are poorly understood. I performed a series of experiments using a common molecular currency - carotenoid pigments - to track somatic and reproductive investments through development and into adulthood. Carotenoids are red, orange, or yellow pigments that: (a) animals must acquire from their diets, (b) can be physiologically beneficial, acting as antioxidants or immunostimulants, and (c) color the sexually attractive features (e.g., feathers, scales) of many animals. I studied how carotenoid nutrition and immune challenges during ontogeny impacted ornamental coloration and immune function of adult male mallard ducks (Anas platyrhynchos). Male mallards use carotenoids to pigment their yellow beak, and males with more beaks that are more yellow are preferred as mates, have increased immune function, and have higher quality sperm. In my dissertation work, I established a natural context for the role that carotenoids and body condition play in the formation of the adult phenotype and examined how early-life experiences, including immune challenges and dietary access to carotenoids, affect adult immune function and ornamental coloration. Evidence from mallard ducklings in the field showed that variation in circulating carotenoid levels at hatch are likely driven by maternal allocation of carotenoids, but that carotenoid physiology shifts during the subsequent few weeks to reflect individual foraging habits. In the lab, adult beak color expression and immune function were more tightly correlated with body condition during growth than body condition during subsequent stages of development or adulthood. Immune challenges during development affected adult immune function and interacted with carotenoid physiology during adulthood, but did not affect adult beak coloration. Dietary access to carotenoids during development, but not adulthood, also affected adult immune function. Taken together, these results highlight the importance of the developmental stage in shaping certain survival-related traits (i.e., immune function), and lead to further questions regarding the development of ornamental traits.
ContributorsButler, Michael (Author) / McGraw, Kevin J. (Thesis advisor) / Chang, Yung (Committee member) / Deviche, Pierre (Committee member) / DeNardo, Dale (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
150705-Thumbnail Image.png
Description
Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic

Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic expression system. Vectors carrying this sequence in a monocistronic reporter plasmid produce >1,000-fold more protein than equivalent vectors with conventional vaccinia promoters. Initial mechanistic studies indicate that high protein expression results from dual activity that impacts both transcription and translation. I suggest that this motif represents a powerful new tool in vaccinia-based protein expression and vaccine development technology.
ContributorsFlores, Julia Anne (Author) / Chaput, John C (Thesis advisor) / Jacobs, Bertram (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2012
151241-Thumbnail Image.png
Description
Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on the early identification of tumor cells as well as a detailed understanding of cancer as a whole. Identifying proteins specific

Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on the early identification of tumor cells as well as a detailed understanding of cancer as a whole. Identifying proteins specific to tumor cells provide an opportunity to develop noninvasive clinical tests and further our understanding of tumor biology. Using liquid chromatography-mass spectrometry (LC-MS/MS) a short peptide was identified in pancreatic cancer patient plasma that was not found in normal samples, and mapped back to QSOX1 protein. Immunohistochemistry was performed probing for QSOX1 in tumor tissue and discovered that QSOX1 is highly over-expressed in pancreatic and breast tumors. QSOX1 is a FAD-dependent sulfhydryl oxidase that is extremely efficient at forming disulfide bonds in nascent proteins. While the enzymology of QSOX1 has been well studied, the tumor biology of QSOX1 has not been studied. To begin to determine the advantage that QSOX1 over-expression provides to tumors, short hairpin RNA (shRNA) were used to reduce the expression of QSOX1 in human tumor cell lines. Following the loss of QSOX1 growth rate, apoptosis, cell cycle and invasive potential were compared between tumor cells transduced with shQSOX1 and control tumor cells. Knock-down of QSOX1 protein suppressed tumor cell growth but had no effect on apoptosis and cell cycle regulation. However, shQSOX1 dramatically inhibited the abilities of both pancreatic and breast tumor cells to invade through Matrigel in a modified Boyden chamber assay. Mechanistically, shQSOX1-transduced tumor cells secreted MMP-2 and -9 that were less active than MMP-2 and -9 from control cells. Taken together, these results suggest that the mechanism of QSOX1-mediated tumor cell invasion is through the post-translational activation of MMPs. This dissertation represents the first in depth study of the role that QSOX1 plays in tumor cell biology.
ContributorsKatchman, Benjamin A (Author) / Lake, Douglas F. (Thesis advisor) / Rawls, Jeffery A (Committee member) / Miller, Laurence J (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2012
135663-Thumbnail Image.png
Description
Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely

Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely studied as a vaccine vector since the large genome allows for the insertion of multiple genes. It is also studied as a molecular tool for gene therapy and gene functional study. Despite its success as a live vaccine, the vaccination causes some mild to serious bur rare adverse events in vaccinees such as generalized Vaccinia and encepharitis. Therefore, identification of virulence genes and removal of these genes to create a safer vaccine remain an important tasks. In this study, the author seeks to elucidate the possible relationship between immune evading proteins E3 and B19. VV did not allow double deletions of E3 and B19, indicating the existence of a relationship between the two genes.
ContributorsBarclay, Shizuka (Author) / Jacobs, Bertram (Thesis director) / Ugarova, Tatiana (Committee member) / Kibler, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136878-Thumbnail Image.png
Description
In the United States, a dispute has arisen over the safety and need for vaccination, particularly in regard to compulsory vaccination laws. New outlets and social media sites publish countless reports about the dangers of vaccines or of known adverse reactions as well as imagined or unproven worries. Individuals' rights

In the United States, a dispute has arisen over the safety and need for vaccination, particularly in regard to compulsory vaccination laws. New outlets and social media sites publish countless reports about the dangers of vaccines or of known adverse reactions as well as imagined or unproven worries. Individuals' rights to choose to get vaccinated or allow their children to be vaccinated comes to direct conflict with measures needed to protect communities from preventable viral diseases. The controversy surrounding vaccines is not new, nor necessarily are the fundamental reasons for skepticism. Looking back through the history of vaccines as a medical tool, the evolution of the controversy can be observed taking place with each new historical context, scientific development, and social conditions. Despite scientific research and assurances of vaccine safety, opposition and unease about vaccination appear to take Looking individually at the development and distribution of the smallpox (variola virus), polio (poliovirus) and human papilloma virus(HPV) vaccines, concerns regarding the violation of personal rights, safety of vaccines themselves, and social stigmas and connotations surrounding vaccines can be seen to evolve and change. Due to the way doubt can manifest in different ways over time, it may be impossible to fully end the vaccine debate. However, nderstanding the sociological factors behind anti-vaccine sentiment may allow healthcare professionals to work with concerned people with a particular care to address these visceral and sometimes irrational fears surrounding vaccination.
ContributorsStevens, Luke Christian (Author) / Jacobs, Bertram (Thesis director) / Washo-Krupps, Delon (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137595-Thumbnail Image.png
Description
Utilizing a compilation of existing literature, theory and current praxis, a clear case for instituting a needle exchange in Maricopa County is visible.. Research on HIV rates are consulted to establish a foundation for understanding the value of needle exchange programs nationally and in Maricopa County. Case studies on existing

Utilizing a compilation of existing literature, theory and current praxis, a clear case for instituting a needle exchange in Maricopa County is visible.. Research on HIV rates are consulted to establish a foundation for understanding the value of needle exchange programs nationally and in Maricopa County. Case studies on existing needle exchange efficacy are also used to support the proposal and outline the success of needle exchanges in reducing rates of infection.
ContributorsGuntermann, Christel Young Shin (Author) / Jacobs, Bertram (Thesis director) / Jackson, Danielle (Committee member) / Taylor, Emily (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / School of Community Resources and Development (Contributor)
Created2013-05
137644-Thumbnail Image.png
Description
Our goal was to design a method to express soluble folded major histocompatibility complex (MHC) proteins using human cell line HeLa lysate with the novel 1-Step Human In Vitro Protein Expression by Thermo Scientific in the presence of β2 microglobulin (β2m) and antigenic peptide.
We confirmed that the soluble protein MHC-A2.1

Our goal was to design a method to express soluble folded major histocompatibility complex (MHC) proteins using human cell line HeLa lysate with the novel 1-Step Human In Vitro Protein Expression by Thermo Scientific in the presence of β2 microglobulin (β2m) and antigenic peptide.
We confirmed that the soluble protein MHC-A2.1 could be successfully attached to the Luminex magnetic beads and detected using the primary antibody anti-GST and the detection antibody goat mAb mouse PE. The average net MFI of the attached pA2.1-bead complex was 8182. Biotinylated A2.1 MHC complexes pre-folded with β2m and FLU M1 peptide (A2.1 monomers) were also successfully attached to Luminex magnetic beads and detected with BB7.2. The average net MFI of the detected A2.1 monmer-bead complexes was 318. The protein MHC complexes were multimerized on magnetic beads to create MHC tetramers and detected with BB7.2, PE labeled monoclonal antibody, via median fluorescent intensity with the Luminex platform. Varying protein, β2 microglobulin (β2m), and peptide concentrations were tested in a number of MHC-A2.1 protein refolding trials. Different antigenic peptides and attachment methods were also tested. However, none of the MHC-A2.1 protein folding and capture trials were successful. Although MHC-A2.1 complexes and recombinant MHC molecules could be attached to Luminex magnetic beads and be detected by Luminex arrays, soluble protein A2.1 could not be successfully expressed, refolded, captured onto Luminex beads, and detected. All refolding trials resulted in a net MFI of <25. The failed refolding and capture trials of A2.1 lead to the conclusion that human cell line HeLa lysate cannot be used to properly fold MHC molecules. However, efforts to refold the complexes onto Luminex magnetic beads are ongoing. We are also using the baculovirus expression system to refold soluble A2.1 lysate onto peptide-bead complexes.
ContributorsChang, Peter S (Author) / Anderson, Karen (Thesis director) / Chang, Yung (Committee member) / Sundaresan, Krishna (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
137763-Thumbnail Image.png
Description
Lipid microdomains play a vital role in a number of biological processes. They are often a target of diseases and viruses. Viruses in particular utilize lipid microdomains to gain entry and fuse with the host-cell membrane. Measles virus (MV) a human pathogen, spread from cell to cell by inducing fusion

Lipid microdomains play a vital role in a number of biological processes. They are often a target of diseases and viruses. Viruses in particular utilize lipid microdomains to gain entry and fuse with the host-cell membrane. Measles virus (MV) a human pathogen, spread from cell to cell by inducing fusion of cellular membranes. This causes the formation of large multinucleated cells, syncytia. It has been previously reported that lipid microdomains are essential for measles virus infection/replication. In this study we used methyl beta cyclodextrin (MBCD), a cholesterol-sequestering agent to disrupt lipid microdomains. Through transfection of Vero h/SLAM cells, we found that Measles virus fusion was dependent on lipid microdomains integrity. Indeed, a dose dependent fusion inhibition was documented with increasing concentrations of MBCD resulting in reduced formation of syncytia.
ContributorsKwan, Jason (Author) / Reyes del Valle, Jorge (Thesis director) / Chang, Yung (Committee member) / Mor, Tsafrir (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / School of Life Sciences (Contributor)
Created2013-05