Matching Items (2)
187660-Thumbnail Image.png
Description
Direct Ink Deposition is a type of 3D printing that utilizes a nozzle to coat thin films onto substrates. Electrospray deposition is a subcategory of Direct Ink Deposition wherein a very strong electric field is applied between the nozzle exit and the substrate, which results in the precursor polymer ink

Direct Ink Deposition is a type of 3D printing that utilizes a nozzle to coat thin films onto substrates. Electrospray deposition is a subcategory of Direct Ink Deposition wherein a very strong electric field is applied between the nozzle exit and the substrate, which results in the precursor polymer ink to be sprayed onto the substrate in the form of micro- or nano-droplets. As of today, its applications are limited to producing small area polymer solar cells or for biomedical applications, particularly in laboratories, but in the future, with optimization of electrospray deposition, this method can be further expanded to 3D printing components that can be used in the aerospace, automotive, and other such large-scale industries. The objective of this research is to see how application of ultrasonic vibrations during, and post deposition affects the morphology, electrical conductivity, and the respective surface properties of the thin Poly(3,4 – Ethylenedioxythipohene)-Poly(Styrenesulfonate) (PEDOT:PSS) film printed via electrospray deposition. The printing setup was previously designed and constructed, wherein the syringe was loaded with the PEDOT:PSS and Isopropyl Alcohol (IPA) solution which was then printed onto thin and small sized Indium Tin Oxide (ITO) substrates under the application of a high voltage. The distance of the nozzle from the substrate was appropriately adjusted via the vertical linear movable stage before printing, as well as the voltage supply. Deposition time was set using an Arduino code that controlled the horizontal movement of the shutter attached to the bottom of the vertical linear aluminum frame. Horizontally and vertically induced vibrations were turned on during and post deposition to analyze the effect of both on the films’ properties through an ultrasonic transducer. The electrical sheet resistance of the PEDOT:PSS films was measured using a 4-point probe device and the surface contact angle of water on the PEDOT:PSS was measured using a contact angle meter. From the results obtained, it was concluded that the application ultrasonic vibrations improved wettability compared to the films printed without any vibrations. Furthermore, the electrical sheet resistance and contact angle of pure ITO was measured as a reference.
ContributorsRavishekar, Rohan (Author) / Li, Xiangjia (Thesis advisor) / Alford, Terry L (Thesis advisor) / Pathikonda, Gokul (Committee member) / Arizona State University (Publisher)
Created2023
187671-Thumbnail Image.png
Description
Over the past few years, research into the use of doped diamond in electronics has seen an exponential growth. In the course of finding ways to reduce the contact resistivity, nanocarbon materials have been an interesting focus. In this work, the transfer length method (TLM) was used to investigate Ohmic

Over the past few years, research into the use of doped diamond in electronics has seen an exponential growth. In the course of finding ways to reduce the contact resistivity, nanocarbon materials have been an interesting focus. In this work, the transfer length method (TLM) was used to investigate Ohmic contact properties using the tri-layer stack Ti/Pt/Au on nitrogen-doped n-type conducting nano-carbon (nanoC) layers grown on (100) diamond substrates. The nanocarbon material was characterized using Secondary Ion Mass Spectrometry (SIMS), Scanning electron Microscopy (SEM) X-ray diffraction (XRD), Raman scattering and Hall effect measurements to probe the materials characteristics. Room temperature electrical measurements were taken, and samples were annealed to observe changes in electrical conductivity. Low specific contact resistivity values of 8 x 10^-5 Ωcm^2 were achieved, which was almost two orders of magnitude lower than previously reported values. The results were attributed to the increased nitrogen incorporation, and the presence of electrically active defects which leads to an increase in conduction in the nanocarbon. Further a study of light phosphorus doped layers using similar methods with Ti/Pt/Au contacts again yielded a low contact resistivity of about 9.88 x 10^-2 Ωcm^2 which is an interesting prospect among lightly doped diamond films for applications in devices such as transistors. In addition, for the first time, hafnium was substituted for Ti in the contact stack (Hf/Pt/Au) and studied on nitrogen doped nanocarbon films, which resulted in low contact resistivity values on the order of 10^-2 Ωcm^2. The implications of the results were discussed, and recommendations for improving the experimental process was outlined. Lastly, a method for the selective area growth of nanocarbon was developed and studied and the results provided an insight into how different characterizations can be used to confirm the presence of the nanocrystalline diamond material, the limitations due to the film thickness was explored and ideas for future work was proposed.
ContributorsAmonoo, Evangeline Abena (Author) / Thornton, Trevor (Thesis advisor) / Alford, Terry L (Thesis advisor) / Anwar, Shahriar (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2023