Matching Items (12,203)
Filtering by

Clear all filters

ContributorsLovelady, Alexis (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-08
150039-Thumbnail Image.png
Description
The intent of this research is to determine if cool roofs lead to increased energy use in the U.S. and if so, in what climates. Directed by the LEED environmental building rating system, cool roofs are increasingly specified in an attempt to mitigate urban heat island effect. A typical single

The intent of this research is to determine if cool roofs lead to increased energy use in the U.S. and if so, in what climates. Directed by the LEED environmental building rating system, cool roofs are increasingly specified in an attempt to mitigate urban heat island effect. A typical single story retail building was simulated using eQUEST energy software across seven different climatic zones in the U.S.. Two roof types are varied, one with a low solar reflectance index of 30 (typical bituminous roof), and a roof with SRI of 90 (high performing membrane roof). The model also varied the perimeter / core fraction, internal loads, and schedule of operations. The data suggests a certain point at which a high SRI roofing finish results in energy penalties over the course of the year in climate zones which are heating driven. Climate zones 5 and above appear to be the flipping point, beyond which the application of a high SRI roof creates sufficient heating penalties to outweigh the cooling energy benefits.
ContributorsLee, John (Author) / Bryan, Harvey (Thesis advisor) / Marlin, Marlin (Committee member) / Ramalingam, Muthukumar (Committee member) / Arizona State University (Publisher)
Created2011
150410-Thumbnail Image.png
Description
A design methodology for a new breed of launch vehicle capable of lofting small satellites to orbit is discussed. The growing need for such a rocket is great: the United States has no capabilities in place to quickly launch and reconstitute satellite constellations. A loss of just one satellite, natural

A design methodology for a new breed of launch vehicle capable of lofting small satellites to orbit is discussed. The growing need for such a rocket is great: the United States has no capabilities in place to quickly launch and reconstitute satellite constellations. A loss of just one satellite, natural or induced, could significantly degrade or entirely eliminate critical space-based assets which would need to be quickly replaced. Furthermore a rocket capable of meeting the requirements for operationally responsive space missions would be an ideal launch platform for small commercial satellites. The proposed architecture to alleviate this lack of an affordable dedicated small-satellite launch vehicle relies upon a combination of expendable medium-range military surplus solid rocket motor assets. The dissertation discusses in detail the current operational capabilities of these military boosters and provides an outline for necessary refurbishments required to successfully place a small payload in orbit. A custom 3DOF trajectory script is used to evaluate the performance of these designs. Concurrently, a parametric cost-mass-performance response surface methodology is employed as an optimization tool to minimize life cycle costs of the proposed vehicles. This optimization scheme is centered on reducing life cycle costs per payload mass delivered rather than raw performance increases. Lastly, a novel upper-stage engine configuration using Hydroxlammonium Nitrate (HAN) is introduced and experimentally static test fired to illustrate the inherent simplicity and high performance of this high density, nontoxic propellant. The motor was operated in both pulse and small duration tests using a newly developed proprietary mixture that is hypergolic with HAN upon contact. This new propellant is demonstrated as a favorable replacement for current space vehicles relying on the heritage use of hydrazine. The end result is a preliminary design of a vehicle built from demilitarized booster assets that complements, rather than replaces, traditional space launch vehicles. This dissertation proves that such capabilities exist and more importantly that the resulting architecture can serve as a viable platform for immediate and affordable access to low Earth orbit.
ContributorsVillarreal, James Kendall (Author) / Squires, Kyle (Thesis advisor) / Lee, Taewoo (Committee member) / Shankar, Praveen (Committee member) / Sharp, Thomas (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2011
ContributorsAle, Lea (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-07
ContributorsASU Library. Music Library (Publisher)
Created2018-04-09
ContributorsZhang, Ziyang (Performer) / Chen, Neilson (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-12
ContributorsKierum, Caitlin (Contributor) / Novak, Gail (Pianist) (Performer) / Liang, Jack (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-11
ContributorsLee, Jun (Performer) / Kim, Rina (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-08
149949-Thumbnail Image.png
Description
The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of `green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the

The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of `green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the general realm of post-occupancy evaluation (POE). POE involves evaluating building performance in terms of energy-use, indoor environmental quality, acoustics and water-use; the first aspect i.e. energy-use is addressed in this thesis. Normally, a full year or more of energy-use and weather data is required to determine the actual post-occupancy energy-use of buildings. In many cases, either measured building performance data is not available or the time and cost implications may not make it feasible to invest in monitoring the building for a whole year. Knowledge about the minimum amount of measured data needed to accurately capture the behavior of the building over the entire year can be immensely beneficial. This research identifies simple modeling techniques to determine best time of the year to begin in-situ monitoring of building energy-use, and the least amount of data required for generating acceptable long-term predictions. Four analysis procedures are studied. The short-term monitoring for long-term prediction (SMLP) approach and dry-bulb temperature analysis (DBTA) approach allow determining the best time and duration of the year for in-situ monitoring to be performed based only on the ambient temperature data of the location. Multivariate change-point (MCP) modeling uses simulated/monitored data to determine best monitoring period of the year. This is also used to validate the SMLP and DBTA approaches. The hybrid inverse modeling method-1 predicts energy-use by combining a short dataset of monitored internal loads with a year of utility-bills, and hybrid inverse method-2 predicts long term building performance using utility-bills only. The results obtained show that often less than three to four months of monitored data is adequate for estimating the annual building energy use, provided that the monitoring is initiated at the right time, and the seasonal as well as daily variations are adequately captured by the short dataset. The predictive accuracy of the short data-sets is found to be strongly influenced by the closeness of the dataset's mean temperature to the annual average temperature. The analysis methods studied would be very useful for energy professionals involved in POE.
ContributorsSingh, Vipul (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011
149965-Thumbnail Image.png
Description
Image processing in canals, rivers and other bodies of water has been a very important concern. This research using Image Processing was performed to obtain a photographic evidence of the data of the site which helps in monitoring the conditions of the water body and the surroundings. Images are captured

Image processing in canals, rivers and other bodies of water has been a very important concern. This research using Image Processing was performed to obtain a photographic evidence of the data of the site which helps in monitoring the conditions of the water body and the surroundings. Images are captured using a digital camera and the images are stored onto a datalogger, these images are retrieved using a cellular/ satellite modem. A MATLAB program was designed to obtain the level of water by just entering the file name into to the program, a curve fit model was created to determine the contrast parameters. The contrast parameters were obtained using the data obtained from the gray scale image mainly the mean and variance of the intensity values. The enhanced images are used to determine the level of water by taking pixel intensity plots along the region of interest. The level of water obtained is accurate to less than 2% of the actual level of water observed from the image. High speed imaging in micro channels have various application in industrial field, medical field etc. In medical field it is tested by using blood samples. The experimental procedure proposed determines the flow duration and the defects observed in these channel using a fluid introduced into the micro channel the fluid being water based dye and whole milk. The viscosity of the fluid shows different types of flow patterns and defects in the micro channel. The defects observed vary from a small effect to the flow pattern to an extreme defect in the channel such as obstruction of flow or deformation in the channel. The sample needs to be further analyzed by SEM to get a better insight on the defects.
ContributorsShasedhara, Abhijeet Bangalore (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011