Matching Items (2)
Filtering by

Clear all filters

149545-Thumbnail Image.png
Description
The discovery of the superconductor MgB2 led to the increase of research activity for more compounds adopting the AlB2 structure type and containing superconductive properties. The prominent successor compounds were the silicide systems, AeAlSi (Ae=Sr, Ba, Ca). Presented here is an extension of this investigation to the germanides, SrAlGe

The discovery of the superconductor MgB2 led to the increase of research activity for more compounds adopting the AlB2 structure type and containing superconductive properties. The prominent successor compounds were the silicide systems, AeAlSi (Ae=Sr, Ba, Ca). Presented here is an extension of this investigation to the germanides, SrAlGe and BaAlGe. The ternary structures were synthesized through arc-melting elemental stoichiometric mixtures and structurally characterized by x-ray powder diffraction. Both crystallize as the hexagonal SrPtSb structure type, a variant of the AlB2 structure type. The low temperature region was measured on a Vibrating Sample Magnetometer (VSM) and both present the onset of superconductivity below 7K. These compounds are susceptible to hydrogen absorption and the new polyanionic hydrides, SrAlGeH and BaAlGeH, structural and dynamic properties are presented. The hydrides were synthesized via two distinct methods. One method is the reaction of SrH2 (BaH2) with elemental mixture of the Al and Ge under pressurized hydrogen and the other is a hydrogenation of the SrAlGe and BaAlGe. Both crystallize in the trigonal SrAlSiH structure type, as determined from Rietveld analysis on powder neutron diffraction measurements. The hydrogen is coordinated by both the active metal and aluminum atoms, providing a unique environment for studying metal-hydrogen interactions. When exposed to air, both the hydrides and alloys transform from a crystalline grey to an amorphous yellow powder accompanied by a dramatic volume increase. Infrared spectroscopy shows the disappearance of the bands associated with the Al-H bond and the appearance of Ge-H and O-H bands. This indicates the material reacts with atmospheric water.
ContributorsKranak, Verina Franika (Author) / Häussermann, Ulrich (Thesis advisor) / Seo, Dong Kyun (Committee member) / Kouvetakis, John (Committee member) / Arizona State University (Publisher)
Created2011
157802-Thumbnail Image.png
Description
Sn-based group IV materials such as Ge1-xSnx and Ge1-x-ySixSny alloys have great potential for developing Complementary Metal Oxide Semiconductor (CMOS) compatible devices on Si because of their tunable band structure and lattice constants by controlling Si and/or Sn contents. Growth of Ge1-xSnx binaries through Molecular Beam Epitaxy (MBE) started in

Sn-based group IV materials such as Ge1-xSnx and Ge1-x-ySixSny alloys have great potential for developing Complementary Metal Oxide Semiconductor (CMOS) compatible devices on Si because of their tunable band structure and lattice constants by controlling Si and/or Sn contents. Growth of Ge1-xSnx binaries through Molecular Beam Epitaxy (MBE) started in the early 1980s, producing Ge1-xSnx epilayers with Sn concentrations varying from 0 to 100%. A Chemical Vapor Deposition (CVD) method was developed in the early 2000s for growing Ge1-xSnx alloys of device quality, by utilizing various chemical precursors. This method dominated the growth of Ge1-xSnx alloys rapidly because of the great crystal quality of Ge1-xSnx achieved. As the first practical ternary alloy completely based on group IV elements, Ge1-x-ySixSny decouples bandgap and lattice constant, becoming a prospective CMOS compatible alloy. At the same time, Ge1-x-ySixSny ternary system could serve as a thermally robust alternative to Ge1-ySny binaries given that it becomes a direct semiconductor at a Sn concentration of 6%-10%. Ge1-x-ySixSny growths by CVD is summarized in this thesis. With the Si/Sn ratio kept at ~3.7, the ternary alloy system is lattice matched to Ge, resulting a tunable direct bandgap of 0.8-1.2 eV. With Sn content higher than Si content, the ternary alloy system could have an indirect-to-direct transition, as observed for Ge1-xSnx binaries. This thesis summarizes the development of Ge1-xSnx and Ge1-x-ySixSny alloys through MBE and CVD in recent decades and introduces an innovative direct injection method for synthesizing Ge1-x-ySixSny ternary alloys with Sn contents varying from 5% to 12% and Si contents kept at 1%-2%. Grown directly on Si (100) substrates in a Gas-phase Molecular Epitaxy (GSME) reactor, both intrinsic and n-type doped Ge1-x-ySixSny with P with thicknesses of 250-760 nm have been achieved by deploying gas precursors Ge4H10, Si4H10, SnD4 and P(SiH3)3 at the unprecedented low growth temperatures of 190-220 °C. Compressive strain is reduced and crystallinity of the Ge1-x-ySixSny epilayer is improved after rapid thermal annealing (RTA) treatments. High Resolution X-ray Diffraction (HR-XRD), Rutherford Backscattering Spectrometry (RBS), cross-sectional Transmission Electron Microscope (XTEM) and Atomic Force Microscope (AFM) have been combined to characterize the structural properties of the Ge1-x-ySixSny samples, indicating good crystallinity and flat surfaces.
ContributorsHu, Ding (Author) / Kouvetakis, John (Thesis advisor) / Menéndez, Jose (Committee member) / Trovitch, Ryan (Committee member) / Arizona State University (Publisher)
Created2019