Matching Items (108)
Filtering by

Clear all filters

161844-Thumbnail Image.png
Description
Thermal management is a critical aspect of microelectronics packaging and often centers around preventing central processing units (CPUs) and graphics processing units (GPUs) from overheating. As the need for power going into these processors increases, so too does the need for more effective thermal management strategies. One such strategy is

Thermal management is a critical aspect of microelectronics packaging and often centers around preventing central processing units (CPUs) and graphics processing units (GPUs) from overheating. As the need for power going into these processors increases, so too does the need for more effective thermal management strategies. One such strategy is to utilize additive manufacturing to fabricate heat sinks with bio-inspired and cellular structures and is the focus of this thesis. In this study, a process was developed for manufacturing the copper alloy CuNi2SiCr on the 100w Concept Laser Mlab laser powder bed fusion 3D printer to obtain parts that were 94% dense, while dealing with challenges of low absorptivity in copper and its high potential for oxidation. The developed process was then used to manufacture and test heat sinks with traditional pin and fin designs to establish a baseline cooling effect, as determined from tests conducted on a substrate, CPU and heat spreader assembly. Two additional heat sinks were designed, the first of these being bio-inspired and the second incorporating Triply Periodic Minimal Surface (TPMS) cellular structures, with the aim of trying to improve the cooling effect relative to commercial heat sinks. The results showed that the pure copper commercial pin-design heat sink outperformed the additive manufactured (AM) pin-design heat sink under both natural and forced convection conditions due to its approximately tenfold higher thermal conductivity, but that the gap in performance could be bridged using the bio-inspired and Schwarz-P heat sink designs developed in this work and is an encouraging indicator that further improvements could be obtained with improved alloys, heat treatments and even more innovative designs.
ContributorsYaple, Jordan Marie (Author) / Bhate, Dhruv (Thesis advisor) / Azeredo, Bruno (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2021
158887-Thumbnail Image.png
Description
Gas Dynamic Virtual Nozzles (GDVN) produce microscopic flow-focused liquid jets and are widely used for sample delivery in serial femtosecond crystallography (SFX) and time-resolved solution scattering. Recently, 2-photon polymerization (2PP) made it possible to produce 3D-printed GDVNs with submicron printing resolution. Comparing with hand- fabricated nozzles, reproducibility, and less developing

Gas Dynamic Virtual Nozzles (GDVN) produce microscopic flow-focused liquid jets and are widely used for sample delivery in serial femtosecond crystallography (SFX) and time-resolved solution scattering. Recently, 2-photon polymerization (2PP) made it possible to produce 3D-printed GDVNs with submicron printing resolution. Comparing with hand- fabricated nozzles, reproducibility, and less developing effort, and similarity of the performance of different 3D printed nozzles are among the advantages of using 3D printing techniques to develop GDVN’s. Submicron printing resolution also makes it possible to easily improve GDVN performance by optimizing the design of nozzles. In this study, 3D printed nozzles were developed to achieve low liquid and gas flow rates and high liquid jet velocities. A double-pulsed nanosecond laser imaging system was used to perform Particle Tracking Velocimetry (PTV) in order to determine jet velocities and assess jet stability/reproducibility. The testing results of pure water jets focused with He sheath gas showed that some designs can easily achieve stable liquid jets with velocities of more than 80 m/s, with pure water flowing at 3 microliters/min, and helium sheath gas flowing at less than 5 mg/min respectively. A numerical simulation pipeline was also used to characterize the performance of different 3D printed GDVNs. The results highlight the potential of making reproducible GDVNs with minimum fabrication effort, that can meet the requirements of present and future SFX and time-resolved solution scattering research.
ContributorsNazari, Reza (Author) / Adrian, Ronald (Thesis advisor) / Kirian, Richard (Thesis advisor) / Herrmann, Marcus (Committee member) / Phelan, Patrick (Committee member) / Weierstall, Uwe (Committee member) / Arizona State University (Publisher)
Created2020
158882-Thumbnail Image.png
Description
The relationship between settler-colonial governments and Indigenous nations has been a contentious one, filled with disingenuity and fueled by the abuse of power dynamics. Specifically, colonial governments have repeatedly used power in mapping, cultural Othering, resource control, and research methodologies to assimilate, acculturate, or otherwise dominate every aspect of

The relationship between settler-colonial governments and Indigenous nations has been a contentious one, filled with disingenuity and fueled by the abuse of power dynamics. Specifically, colonial governments have repeatedly used power in mapping, cultural Othering, resource control, and research methodologies to assimilate, acculturate, or otherwise dominate every aspect of Indigenous lives. A relatively recent pushback from Indigenous peoples led to the slow reclamation of sovereignty, including in the United States. Revamped federal Indian programs allegedly promote tribal self-determination, yet they paradoxically serve a vast quantity of cultures through singular blanket programs that are blind to the cultural component of Indigenous identity - the centerfold of colonial aggression for centuries. The U.S. Department of Housing and Urban Development’s Office of Public and Indian Housing is no exception, using a Western framework to provide generic services that neither serve cultural needs nor are tailored to the specific environment traditional homes were historically and epistemologically suited for. This research analyzes the successes of new programs as well as the failures of the federal government to conduct responsible research and promote the authentic self-determination of tribes in terms of housing and urban development. It also considers the successes and failures of tribes to effectively engage in program reformation negotiation, community planning, and accountability measures to ensure their communities are served with enough culturally-appropriate, sustainable housing without mistrusting their own housing entities. Solutions for revising this service gap are proposed, adhering to a framework that centers diverse cultural values, community input, and functional design to increase each tribe’s implementation of self-determination in HUD housing programs.
ContributorsDeVault, Kayla (Author) / Martinez, David (Thesis advisor) / Hale, Michelle (Thesis advisor) / Phelan, Patrick (Committee member) / Dalla Costa, Wanda (Committee member) / Arizona State University (Publisher)
Created2020
161473-Thumbnail Image.png
Description
Buildings release an abundance of waste heat that is left unused. Thermogalvaniccells (TGCs) can take advantage of waste heat to generate electricity with a low temperature gradient. In this dissertation, I simulated the thermal transport of TGCs containing different triply periodic minimal surface (TPMS) structures, compared it to measured values and conducted a

Buildings release an abundance of waste heat that is left unused. Thermogalvaniccells (TGCs) can take advantage of waste heat to generate electricity with a low temperature gradient. In this dissertation, I simulated the thermal transport of TGCs containing different triply periodic minimal surface (TPMS) structures, compared it to measured values and conducted a mesh convergence study to examine the viability of the computational fluid dynamics (CFD) solutions. Natural convection effects are one of the driving forces in TGCs. Using the Bousinesq approximation, I was able to capture those effects in the CFD simulations as it accounts for the density variations of the fluid. Upon simulating the TGC using the Schwarz P TPMS geometry, the cathode temperature converged as I refined the mesh and approached the measured value. As for the IWP TPMS structure, the solution converged as I refined the mesh, despite having a deviation to the measured values. This was due to the abundance of sharp regions along the walls of the TPMS that ANSYS had difficulty to accurately model. Furthermore, I simulated the TGCs using different boundary condition (BC) approximations to observe the cathode and anode temperatures as well as their overall ∆T across the cell. For the TGC containing the Schwarz P geometry, Case C (constant anode temperature BC with TPMS conduction) was the most accurate while Case D (convection BC at anode with TPMS conduction) deviated from the measured values, had the most accurate ∆T and was well within the uncertainty bounds of the measured values. Larger temperature fluctuations were seen closer to the cathode while the effects steadily decrease as the fluid approaches the anode. Moreover, the TGC containing the IWP structures presented interesting results. The main deviation was from the cathode temperatures because a higher temperature readings meant that more cells in the fluid domain were prone to diverging, thereby resulting in a higher calculated cathode temperature. Simulating the TGC with the Schwarz P geometry produced satisfactory results while the TGC using the IWP geometry deviated due to the software limitations. Finally, the effects of natural convection and TPMS on TGCs were studied and it was found that the absence of natural convection lead to a higher ∆T while the absence of TPMS resulted in a more uniform temperature distribution throughout the domain
Contributorsalweqayyan, yousef (Author) / Phelan, Patrick (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2021
161551-Thumbnail Image.png
Description
Gas Diffusion Layers (GDL) based on PUREBLACK® carbon and VULCAN® (XC72R) carbon along with catalyst coated membranes were used to fabricate the membrane electrode assemblies for use in proton exchange membrane fuel cells (PEMFCs). Polyethylene glycol was used as the pore-forming agent on the microporous layer to improve the lower

Gas Diffusion Layers (GDL) based on PUREBLACK® carbon and VULCAN® (XC72R) carbon along with catalyst coated membranes were used to fabricate the membrane electrode assemblies for use in proton exchange membrane fuel cells (PEMFCs). Polyethylene glycol was used as the pore-forming agent on the microporous layer to improve the lower and higher relative humidity performance of the fuel cells. Accelerated stress tests based on the dissolution effect of GDLs were conducted and the long-term performance of the GDLs was evaluated. A single-cell fuel cell was used to evaluate the effect of porosity of the micro-porous layer and the effect of different types of carbon powder on the performance of the fuel cell at different operating relative humidity conditions and compared with commercial GDLs.Both PUREBLACK® and VULCAN® (XC72R) based GDLs show crack-free surface morphology in the Scanning electron microscopy and hydrophobic characteristics in the contact angle measurements. The fuel cell performance is evaluated under relative humidity conditions of 60 and 100 % using H2/O2 and H2/Air at 70 ℃ and the durability is also evaluated for the sample with and without 30% PEG for both carbons. The pristine PUREBLACK® based GDL sample with 30% pore-forming agent (total pore volume of 1.72 cc.g-1) demonstrated the highest performance (peak power densities of 432 and 444 mW.cm-2 at 100 and 60 % RH respectively, using H2/Air). There was a significant increase in the macropores when GDLs are aged in H2O2 and the contact angle dropped to about 14 and 95° for PUREBLACK® and VULCAN® carbon, respectively. Overall PUREBLACK® based GDLs performed the best after ageing both in H2O2 and H2O (average performance degradation of 8% in H2O2 and 8.25% in H2O).
ContributorsChauhan, Nitin (Author) / Kannan, Arunachala Mada (Thesis advisor) / Phelan, Patrick (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2021
161898-Thumbnail Image.png
Description
Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used

Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used adsorbents namely zeolite 13X, activated alumina and silica gel is investigated. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant overall input power of 20 and 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. Duplicate experiments were performed at three nominal frequencies of 28, 40 and 80 kHz to observe the influence of frequency on regeneration dynamics. Regarding moisture removal, application of ultrasound results in higher desorption rate compared to a non-ultrasound process. A nonlinear inverse proportionality was observed between the effectiveness of ultrasound and the frequency at which it is applied. Based on the variation of desorption dynamics with ultrasonic power and frequency, three mechanisms of reduced adsorbate adsorption potential, increased adsorbate surface energy and enhanced mass diffusion are proposed. Two analytical models that describe the desorption process were developed based on the experimental data from which novel efficiency metrics were proposed, which can be employed to justify incorporating ultrasound in regeneration and drying processes.
ContributorsDaghooghi Mobarakeh, Hooman (Author) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Wang, Robert (Committee member) / Calhoun, Ronald (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2021
161465-Thumbnail Image.png
Description
The phase change process of freezing water is an important application in several fields such as ice making, food freezing technologies, pharmaceuticals etc. Due to the widespread usage of ice-related products, process improvements in this technology can potentially lead to substantial energy savings. After studying the freezing process of water,

The phase change process of freezing water is an important application in several fields such as ice making, food freezing technologies, pharmaceuticals etc. Due to the widespread usage of ice-related products, process improvements in this technology can potentially lead to substantial energy savings. After studying the freezing process of water, the supercooling phenomenon was found to occur which showed a negative effect. Therefore, ultrasound was proposed as a technique to reduce the supercooling effect and improve the heat transfer rate. An experimental study was conducted to analyze the energy expenditures in the freezing process with and without the application of ultrasound. After a set of preliminary experiments, an intermittent application of ultrasound at 10W & 3.5W power levels were found to be more effective than constant-power application, and were explored in further detail. The supercooling phenomenon was thoroughly studied through iterative experiments. It was also found that the application of ultrasound during the freezing process led to the formation of shard-like ice crystals. From the intermittent ultrasound experiments performed at 10W and 3.5W power levels, percentage energy enhancements relative to no ultrasound of 8.9% ± 12.4% and 11.9% ± 24.6% were observed, respectively.
ContributorsSubramanian, Varun (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2021
190810-Thumbnail Image.png
Description
Failures in the cold chain, the system of refrigerated storage and transport that provides fresh produce or other essentials to be maintained at desired temperatures and environmental conditions, lead to food and energy waste. The mini container (MC) concept is introduced as an alternative to conventional refrigerated trucks (“reefers”), particularly

Failures in the cold chain, the system of refrigerated storage and transport that provides fresh produce or other essentials to be maintained at desired temperatures and environmental conditions, lead to food and energy waste. The mini container (MC) concept is introduced as an alternative to conventional refrigerated trucks (“reefers”), particularly for small growers. The energy consumption and corresponding GHG emissions for transporting tomatoes in two cities representing contrasting climates is analyzed for conventional reefers and the proposed mini containers. The results show that, for partial reefer loads, using the MCs reduces energy consumption and GHG emissions. The transient behavior of the vapor compression refrigeration cycle is analyzed by considering each component as a “lumped” system, and the resulting sub-models are solved using the Runge Kutta 4th-order method in a MATLAB code at hot and cold ambient temperatures. The time needed to reach steady state temperatures and the temperature values are determined. The maximum required compressor work in the transient phase and at steady state are computed, and as expected, as the ambient temperature increases, both values increase. Finally, the average coefficient of performance (COP) is determined for varying heat transfer coefficient values for the condenser and for the evaporator. The results show that the average COP increases as heat transfer coefficient values for the condenser and the evaporator increase. Starting the system from rest has an adverse effect on the COP due to the higher compressor load needed to change the temperature of the condenser and the evaporator. Finally, the impact on COP is analyzed by redirecting a fraction of the cold exhaust air to provide supplemental cooling of the condenser. It is noted that cooling the condenser improves the system's performance better than cooling the fresh air at 0% of returned air to the system.To sum up, the dissertation shows that the comparison between the conventional reefer and the MC illustrates the promising advantages of the MC, then a transient analysis is developed for deeply understanding the behaviors of the system component parameters, which leads finally to improvements in the system to enhance its performance.
ContributorsSyam, Mahmmoud Muhammed (Author) / Phelan, Patrick (Thesis advisor) / Villalobos, Rene (Thesis advisor) / Huang, Huei-Ping (Committee member) / Bocanegra, Luis (Committee member) / Al Omari, Salah (Committee member) / Arizona State University (Publisher)
Created2023