Matching Items (104)
Filtering by

Clear all filters

149454-Thumbnail Image.png
Description
Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the

Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the ability to represent goals in a non-deterministic domain, goals that change non-monotonically, and goals with preferences. This dissertation defines new goal specification languages by extending temporal logics to address these issues. First considered is the goal specification in non-deterministic domains, in which an agent following a policy leads to a set of paths. A logic is proposed to distinguish paths of the agent from all paths in the domain. In addition, to address the need of comparing policies for finding the best ones, a language capable of quantifying over policies is proposed. As policy structures of agents play an important role in goal specification, languages are also defined by considering different policy structures. Besides, after an agent is given an initial goal, the agent may change its expectations or the domain may change, thus goals that are previously specified may need to be further updated, revised, partially retracted, or even completely changed. Non-monotonic goal specification languages that can make these changes in an elaboration tolerant manner are needed. Two languages that rely on labeling sub-formulas and connecting multiple rules are developed to address non-monotonicity in goal specification. Also, agents may have preferential relations among sub-goals, and the preferential relations may change as agents achieve other sub-goals. By nesting a comparison operator with other temporal operators, a language with dynamic preferences is proposed. Various goals that cannot be expressed in other languages are expressed in the proposed languages. Finally, plans are given for some goals specified in the proposed languages.
ContributorsZhao, Jicheng (Author) / Baral, Chitta (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Lee, Joohyung (Committee member) / Lifschitz, Vladimir (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2010
161577-Thumbnail Image.png
Description
This dissertation considers the question of how convenient access to copious networked observational data impacts our ability to learn causal knowledge. It investigates in what ways learning causality from such data is different from -- or the same as -- the traditional causal inference which often deals with small scale

This dissertation considers the question of how convenient access to copious networked observational data impacts our ability to learn causal knowledge. It investigates in what ways learning causality from such data is different from -- or the same as -- the traditional causal inference which often deals with small scale i.i.d. data collected from randomized controlled trials? For example, how can we exploit network information for a series of tasks in the area of learning causality? To answer this question, the dissertation is written toward developing a suite of novel causal learning algorithms that offer actionable insights for a series of causal inference tasks with networked observational data. The work aims to benefit real-world decision-making across a variety of highly influential applications. In the first part of this dissertation, it investigates the task of inferring individual-level causal effects from networked observational data. First, it presents a representation balancing-based framework for handling the influence of hidden confounders to achieve accurate estimates of causal effects. Second, it extends the framework with an adversarial learning approach to properly combine two types of existing heuristics: representation balancing and treatment prediction. The second part of the dissertation describes a framework for counterfactual evaluation of treatment assignment policies with networked observational data. A novel framework that captures patterns of hidden confounders is developed to provide more informative input for downstream counterfactual evaluation methods. The third part presents a framework for debiasing two-dimensional grid-based e-commerce search with observational search log data where there is an implicit network connecting neighboring products in a search result page. A novel inverse propensity scoring framework that models user behavior patterns for two-dimensional display in e-commerce websites is developed, which aims to optimize online performance of ranking algorithms with offline log data.
ContributorsGuo, Ruocheng (Author) / Liu, Huan (Thesis advisor) / Candan, K. Selcuk (Committee member) / Xue, Guoliang (Committee member) / Kiciman, Emre (Committee member) / Arizona State University (Publisher)
Created2021
171756-Thumbnail Image.png
Description
Social media has become a primary means of communication and a prominent source of information about day-to-day happenings in the contemporary world. The rise in the popularity of social media platforms in recent decades has empowered people with an unprecedented level of connectivity. Despite the benefits social media offers, it

Social media has become a primary means of communication and a prominent source of information about day-to-day happenings in the contemporary world. The rise in the popularity of social media platforms in recent decades has empowered people with an unprecedented level of connectivity. Despite the benefits social media offers, it also comes with disadvantages. A significant downside to staying connected via social media is the susceptibility to falsified information or Fake News. Easy accessibility to social media and lack of truth verification tools favored the miscreants on online platforms to spread false propaganda at scale, ensuing chaos. The spread of misinformation on these platforms ultimately leads to mistrust and social unrest. Consequently, there is a need to counter the spread of misinformation which could otherwise have a detrimental impact on society. A notable example of such a case is the 2019 Covid pandemic misinformation spread, where coordinated misinformation campaigns misled the public on vaccination and health safety. The advancements in Natural Language Processing gave rise to sophisticated language generation models that can generate realistic-looking texts. Although the current Fake News generation process is manual, it is just a matter of time before this process gets automated at scale and generates Neural Fake News using language generation models like the Bidirectional Encoder Representations from Transformers (BERT) and the third generation Generative Pre-trained Transformer (GPT-3). Moreover, given that the current state of fact verification is manual, it calls for an urgent need to develop reliable automated detection tools to counter Neural Fake News generated at scale. Existing tools demonstrate state-of-the-art performance in detecting Neural Fake News but exhibit a black box behavior. Incorporating explainability into the Neural Fake News classification task will build trust and acceptance amongst different communities and decision-makers. Therefore, the current study proposes a new set of interpretable discriminatory features. These features capture statistical and stylistic idiosyncrasies, achieving an accuracy of 82% on Neural Fake News classification. Furthermore, this research investigates essential dependency relations contributing to the classification process. Lastly, the study concludes by providing directions for future research in building explainable tools for Neural Fake News detection.
ContributorsKarumuri, Ravi Teja (Author) / Liu, Huan (Thesis advisor) / Corman, Steven (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2022
171764-Thumbnail Image.png
Description
This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework

This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework builds upon the Beltrami Coefficient (BC) description of quasiconformal mappings that directly quantifies local mapping (circles to ellipses) distortions between diffeomorphisms of boundary enclosed plane domains homeomorphic to the unit disk. A new map called the Beltrami Coefficient Map (BCM) was constructed to describe distortions in retinotopic maps. The BCM can be used to fully reconstruct the original target surface (retinal visual field) of retinotopic maps. This dissertation also compared retinotopic maps in the visual processing cascade, which is a series of connected retinotopic maps responsible for visual data processing of physical images captured by the eyes. By comparing the BCM results from a large Human Connectome project (HCP) retinotopic dataset (N=181), a new computational quasiconformal mapping description of the transformed retinal image as it passes through the cascade is proposed, which is not present in any current literature. The description applied on HCP data provided direct visible and quantifiable geometric properties of the cascade in a way that has not been observed before. Because retinotopic maps are generated from in vivo noisy functional magnetic resonance imaging (fMRI), quantifying them comes with a certain degree of uncertainty. To quantify the uncertainties in the quantification results, it is necessary to generate statistical models of retinotopic maps from their BCMs and raw fMRI signals. Considering that estimating retinotopic maps from real noisy fMRI time series data using the population receptive field (pRF) model is a time consuming process, a convolutional neural network (CNN) was constructed and trained to predict pRF model parameters from real noisy fMRI data
ContributorsTa, Duyan Nguyen (Author) / Wang, Yalin (Thesis advisor) / Lu, Zhong-Lin (Committee member) / Hansford, Dianne (Committee member) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2022
161967-Thumbnail Image.png
Description
Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to

Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to force models to avoid being exposed to biases. However, the filtering leads to a considerable wastage of resources as most of the dataset created is discarded as biased. This work deals with avoiding the wastage of resources by identifying and quantifying the biases. I further elaborate on the implications of dataset filtering on robustness (to adversarial attacks) and generalization (to out-of-distribution samples). The findings suggest that while dataset filtering does help to improve OOD(Out-Of-Distribution) generalization, it has a significant negative impact on robustness to adversarial attacks. It also shows that transforming bias-inducing samples into adversarial samples (instead of eliminating them from the dataset) can significantly boost robustness without sacrificing generalization.
ContributorsSachdeva, Bhavdeep Singh (Author) / Baral, Chitta (Thesis advisor) / Liu, Huan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
168509-Thumbnail Image.png
Description
Observational evidence is mounting on the reduction of winter precipitation and an earlier snowmelt in the southwestern United States. It is unclear, however, how these changes, along with forest thinning, will impact water supplies due to complexities in the precipitation-streamflow transformation. In this study, I use the Triangulated Irregular Network-based

Observational evidence is mounting on the reduction of winter precipitation and an earlier snowmelt in the southwestern United States. It is unclear, however, how these changes, along with forest thinning, will impact water supplies due to complexities in the precipitation-streamflow transformation. In this study, I use the Triangulated Irregular Network-based Real-time Integrated Basin Simulator (tRIBS) to provide insight into the independent and combined effects of climate change and forest cover reduction on the hydrologic response in the Beaver Creek (~1100 km2) of central Arizona. Prior to these experiments, confidence in the hydrologic model is established using snow observations at two stations, two nested streamflow gauges, and estimates of spatially-distributed snow water equivalent over a long-term period (water years 2003-2018). Model forcings were prepared using station observations and radar rainfall estimates in combination with downscaling and bias correction techniques that account for the orographic controls on air temperature and precipitation. Model confidence building showed that tRIBS is able to capture well the variation in snow cover and streamflow during wet and dry years in the 16 year simulation period. The results from this study show that the climate change experiments increased average annual streamflow by 1.5% at +1°C of warming. However, a 28% decrease in streamflow occurs by +6°C of warming as evapotranspiration (ET) increases by 10%. Forest thinning shifted the warming threshold where ET increases reduce streamflow yield until +4°C of warming as compared to no forest thinning when this threshold occurs at +2°C. An average increase in streamflow of 12% occurs after forest thinning across all climate scenarios. While the snow covered area is unaffected by thinning, the volume of snowmelt increases and is linked to the higher water yield. These findings indicate that water managers can expect decreases in streamflow due to climate change but may be able to offset these impacts up to a warming threshold by thinning forested areas within the Beaver Creek.
ContributorsCederstrom, Charles Joshua (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Svoma, Bohumil (Committee member) / Arizona State University (Publisher)
Created2021
171440-Thumbnail Image.png
Description
Machine learning models and in specific, neural networks, are well known for being inscrutable in nature. From image classification tasks and generative techniques for data augmentation, to general purpose natural language models, neural networks are currently the algorithm of preference that is riding the top of the current artificial intelligence

Machine learning models and in specific, neural networks, are well known for being inscrutable in nature. From image classification tasks and generative techniques for data augmentation, to general purpose natural language models, neural networks are currently the algorithm of preference that is riding the top of the current artificial intelligence (AI) wave, having experienced the greatest boost in popularity above any other machine learning solution. However, due to their inscrutable design based on the optimization of millions of parameters, it is ever so complex to understand how their decision is influenced nor why (and when) they fail. While some works aim at explaining neural network decisions or making systems to be inherently interpretable the great majority of state of the art machine learning works prioritize performance over interpretability effectively becoming black boxes. Hence, there is still uncertainty in the decision boundaries of these already deployed solutions whose predictions should still be analyzed and taken with care. This becomes even more important when these models are used on sensitive scenarios such as medicine, criminal justice, settings with native inherent social biases or where egregious mispredictions can negatively impact the system or human trust down the line. Thus, the aim of this work is to provide a comprehensive analysis on the failure modes of the state of the art neural networks from three domains: large image classifiers and their misclassifications, generative adversarial networks when used for data augmentation and transformer networks applied to structured representations and reasoning about actions and change.
ContributorsOlmo Hernandez, Alberto (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Sengupta, Sailik (Committee member) / Arizona State University (Publisher)
Created2022
171921-Thumbnail Image.png
Description
With the bloom of machine learning, a massive amount of data has been used in the training process of machine learning. A tremendous amount of this data is user-generated data which allows the machine learning models to produce accurate results and personalized services. Nevertheless, I recognize the importance of preserving

With the bloom of machine learning, a massive amount of data has been used in the training process of machine learning. A tremendous amount of this data is user-generated data which allows the machine learning models to produce accurate results and personalized services. Nevertheless, I recognize the importance of preserving the privacy of individuals by protecting their information in the training process. One privacy attack that affects individuals is the private attribute inference attack. The private attribute attack is the process of inferring individuals' information that they do not explicitly reveal, such as age, gender, location, and occupation. The impacts of this go beyond knowing the information as individuals face potential risks. Furthermore, some applications need sensitive data to train the models and predict helpful insights and figuring out how to build privacy-preserving machine learning models will increase the capabilities of these applications.However, improving privacy affects the data utility which leads to a dilemma between privacy and utility. The utility of the data is measured by the quality of the data for different tasks. This trade-off between privacy and utility needs to be maintained to satisfy the privacy requirement and the result quality. To achieve more scalable privacy-preserving machine learning models, I investigate the privacy risks that affect individuals' private information in distributed machine learning. Even though the distributed machine learning has been driven by privacy concerns, privacy issues have been proposed in the literature which threaten individuals' privacy. In this dissertation, I investigate how to measure and protect individuals' privacy in centralized and distributed machine learning models. First, a privacy-preserving text representation learning is proposed to protect users' privacy that can be revealed from user generated data. Second, a novel privacy-preserving text classification for split learning is presented to improve users' privacy and retain high utility by defending against private attribute inference attacks.
ContributorsAlnasser, Walaa (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Shu, Kai (Committee member) / Bao, Tiffany (Committee member) / Arizona State University (Publisher)
Created2022
190719-Thumbnail Image.png
Description
Social media platforms provide a rich environment for analyzing user behavior. Recently, deep learning-based methods have been a mainstream approach for social media analysis models involving complex patterns. However, these methods are susceptible to biases in the training data, such as participation inequality. Basically, a mere 1% of users generate

Social media platforms provide a rich environment for analyzing user behavior. Recently, deep learning-based methods have been a mainstream approach for social media analysis models involving complex patterns. However, these methods are susceptible to biases in the training data, such as participation inequality. Basically, a mere 1% of users generate the majority of the content on social networking sites, while the remaining users, though engaged to varying degrees, tend to be less active in content creation and largely silent. These silent users consume and listen to information that is propagated on the platform.However, their voice, attitude, and interests are not reflected in the online content, making the decision of the current methods predisposed towards the opinion of the active users. So models can mistake the loudest users for the majority. To make the silent majority heard is to reveal the true landscape of the platform. In this dissertation, to compensate for this bias in the data, which is related to user-level data scarcity, I introduce three pieces of research work. Two of these proposed solutions deal with the data on hand while the other tries to augment the current data. Specifically, the first proposed approach modifies the weight of users' activity/interaction in the input space, while the second approach involves re-weighting the loss based on the users' activity levels during the downstream task training. Lastly, the third approach uses large language models (LLMs) and learns the user's writing behavior to expand the current data. In other words, by utilizing LLMs as a sophisticated knowledge base, this method aims to augment the silent user's data.
ContributorsKarami, Mansooreh (Author) / Liu, Huan (Thesis advisor) / Sen, Arunabha (Committee member) / Davulcu, Hasan (Committee member) / Mancenido, Michelle V. (Committee member) / Arizona State University (Publisher)
Created2023
189385-Thumbnail Image.png
Description
Machine learning models are increasingly being deployed in real-world applications where their predictions are used to make critical decisions in a variety of domains. The proliferation of such models has led to a burgeoning need to ensure the reliability and safety of these models, given the potential negative consequences of

Machine learning models are increasingly being deployed in real-world applications where their predictions are used to make critical decisions in a variety of domains. The proliferation of such models has led to a burgeoning need to ensure the reliability and safety of these models, given the potential negative consequences of model vulnerabilities. The complexity of machine learning models, along with the extensive data sets they analyze, can result in unpredictable and unintended outcomes. Model vulnerabilities may manifest due to errors in data input, algorithm design, or model deployment, which can have significant implications for both individuals and society. To prevent such negative outcomes, it is imperative to identify model vulnerabilities at an early stage in the development process. This will aid in guaranteeing the integrity, dependability, and safety of the models, thus mitigating potential risks and enabling the full potential of these technologies to be realized. However, enumerating vulnerabilities can be challenging due to the complexity of the real-world environment. Visual analytics, situated at the intersection of human-computer interaction, computer graphics, and artificial intelligence, offers a promising approach for achieving high interpretability of complex black-box models, thus reducing the cost of obtaining insights into potential vulnerabilities of models. This research is devoted to designing novel visual analytics methods to support the identification and analysis of model vulnerabilities. Specifically, generalizable visual analytics frameworks are instantiated to explore vulnerabilities in machine learning models concerning security (adversarial attacks and data perturbation) and fairness (algorithmic bias). In the end, a visual analytics approach is proposed to enable domain experts to explain and diagnose the model improvement of addressing identified vulnerabilities of machine learning models in a human-in-the-loop fashion. The proposed methods hold the potential to enhance the security and fairness of machine learning models deployed in critical real-world applications.
ContributorsXie, Tiankai (Author) / Maciejewski, Ross (Thesis advisor) / Liu, Huan (Committee member) / Bryan, Chris (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2023