Matching Items (36)
Filtering by

Clear all filters

149757-Thumbnail Image.png
Description
ABSTRACT Water resources in many parts of the world are subject to increasing stress because of (a) the growth in demand caused by population increase and economic development, (b) threats to supply caused by climate and land cover change, and (c) a heightened awareness of the importance of maintaining water

ABSTRACT Water resources in many parts of the world are subject to increasing stress because of (a) the growth in demand caused by population increase and economic development, (b) threats to supply caused by climate and land cover change, and (c) a heightened awareness of the importance of maintaining water supplies to other parts of the ecosystem. An additional factor is the quality of water management. The United States-Mexican border provides an example of poor water management combined with increasing demand for water resources that are both scarce and uncertain. This dissertation focuses on the problem of water management in the border city of Ciudad Juarez, Chihuahua. The city has attracted foreign investment during the last few decades, largely due to relatively low environmental and labor costs, and to a range of tax incentives and concessions. This has led to economic and population growth, but also to higher demand for public services such as water which leads to congestion and scarcity. In particular, as water resources have become scarce, the cost of water supply has increased. The dissertation analyzes the conditions that allow for the efficient use of water resources at sustainable levels of economic activity--i.e., employment and investment. In particular, it analyzes the water management strategies that lead to an efficient and sustainable use of water when the source of water is either an aquifer, or there is conjunctive use of ground and imported water. The first part of the dissertation constructs a model of the interactive effects of water supply, wage rates, inward migration of labor and inward investment of capital. It shows how growing water scarcity affects population growth through the impact it has on real wage rates, and how this erodes the comparative advantage of Ciudad Juarez--low wages--to the point where foreign investment stops. This reveals the very close connection between water management and the level of economic activity in Ciudad Juarez. The second part of the dissertation examines the effect of sustainable and efficient water management strategies on population and economic activity levels under two different settings. In the first Ciudad Juarez relies exclusively on ground water to meet demand--this reflects the current situation of Ciudad Juarez. In the second Ciudad Juarez is able both to import water and to draw on aquifers to meet demand. This situation is motivated by the fact that Ciudad Juarez is considering importing water from elsewhere to maintain its economic growth and mitigate the overdraft of the Bolson del Hueco aquifer. Both models were calibrated on data for Ciudad Juarez, and then used to run experiments with respect to different environmental and economic conditions, and different water management options. It is shown that for a given set of technological, institutional and environmental conditions, the way water is managed in a desert environment determines the long run equilibrium levels of employment, investment and output. It is also shown that the efficiency of water management is consistent with the sustainability of water use and economic activity. Importing water could allow the economy to operate at higher levels of activity than where it relies solely on local aquifers. However, at some scale, water availability will limit the level of economic activity, and the disposable income of the residents of Ciudad Juarez.
ContributorsGarduno Angeles, Gustavo Leopoldo (Author) / Perrings, Charles (Thesis advisor) / Holway, Jim (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2011
150973-Thumbnail Image.png
Description
In complex consumer-resource type systems, where diverse individuals are interconnected and interdependent, one can often anticipate what has become known as the tragedy of the commons, i.e., a situation, when overly efficient consumers exhaust the common resource, causing collapse of the entire population. In this dissertation I use mathematical modeling

In complex consumer-resource type systems, where diverse individuals are interconnected and interdependent, one can often anticipate what has become known as the tragedy of the commons, i.e., a situation, when overly efficient consumers exhaust the common resource, causing collapse of the entire population. In this dissertation I use mathematical modeling to explore different variations on the consumer-resource type systems, identifying some possible transitional regimes that can precede the tragedy of the commons. I then reformulate it as a game of a multi-player prisoner's dilemma and study two possible approaches for preventing it, namely direct modification of players' payoffs through punishment/reward and modification of the environment in which the interactions occur. I also investigate the questions of whether the strategy of resource allocation for reproduction or competition would yield higher fitness in an evolving consumer-resource type system and demonstrate that the direction in which the system will evolve will depend not only on the state of the environment but largely on the initial composition of the population. I then apply the developed framework to modeling cancer as an evolving ecological system and draw conclusions about some alternative approaches to cancer treatment.
ContributorsKareva, Irina (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Collins, James (Committee member) / Nagy, John (Committee member) / Smith, Hal (Committee member) / Arizona State University (Publisher)
Created2012
151061-Thumbnail Image.png
Description
Despite years of effort, the field of conservation biology still struggles to incorporate theories of animal behavior. I introduce in Chapter I the issues surrounding the disconnect between behavioral ecology and conservation biology, and propose the use of behavioral knowledge in population viability analysis. In Chapter II, I develop a

Despite years of effort, the field of conservation biology still struggles to incorporate theories of animal behavior. I introduce in Chapter I the issues surrounding the disconnect between behavioral ecology and conservation biology, and propose the use of behavioral knowledge in population viability analysis. In Chapter II, I develop a framework that uses three strategies for incorporating behavior into demographic models, outline the costs of each strategy through decision analysis, and build on previous work in behavioral ecology and demography. First, relevant behavioral mechanisms should be included in demographic models used for conservation decision-making. Second, I propose rapid behavioral assessment as a useful tool to approximate demographic rates through regression of demographic phenomena on observations of related behaviors. This technique provides behaviorally estimated parameters that may be applied to population viability analysis for use in management. Finally, behavioral indices can be used as warning signs of population decline. The proposed framework combines each strategy through decision analysis to provide quantitative rules that determine when incorporating aspects of conservation behavior may be beneficial to management. Chapter III applies this technique to estimate birthrate in a colony of California sea lions in the Gulf of California, Mexico. This study includes a cost analysis of the behavioral and traditional parameter estimation techniques. I then provide in Chapter IV practical recommendations for applying this framework to management programs along with general guidelines for the development of rapid behavioral assessment.
ContributorsWildermuth, Robert (Author) / Gerber, Leah R. (Thesis advisor) / Collins, James (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2012
151094-Thumbnail Image.png
Description
Environmental agencies often want to accomplish additional objectives beyond their central environmental protection objective. This is laudable; however it begets a need for understanding the additional challenges and trade-offs involved in doing so. The goal of this thesis is to examine the trade-offs involved in two such cases that have

Environmental agencies often want to accomplish additional objectives beyond their central environmental protection objective. This is laudable; however it begets a need for understanding the additional challenges and trade-offs involved in doing so. The goal of this thesis is to examine the trade-offs involved in two such cases that have received considerable attention recently. The two cases I examine are (1) the protection of multiple environmental goods (e.g., bundles of ecosystem services); and (2) the use of payments for ecosystem services as a poverty reduction mechanism. In the first case (chapter 2), I build a model based on the fact that efforts to protect one environmental good often increase or decrease the levels of other environmental goods, what I refer to as "cobenefits" and "disbenefits" respectively. There is often a desire to increase the cobenefits of environmental protection efforts in order to synergize across conservation efforts; and there is also a desire to decrease disbenefits because they are seen as negative externalities of protection efforts. I show that as a result of reciprocal externalities between environmental protection efforts, environmental agencies likely have a disincentive to create cobenefits, but may actually have an incentive to decrease disbenefits. In the second case (chapter 3), I model an environmental agency that wants to increase environmental protection, but would also like to reduce poverty. The model indicates that in theory, the trade-offs between these two goals may depend on relevant parameters of the system, particularly the ratio of the price of monitoring to participant's compliance cost. I show that when the ratio of monitoring costs to compliance cost is higher, trade-offs between environmental protection and poverty reduction are likely to be smaller. And when the ratio of monitoring costs to compliance costs is lower, trade-offs are likely to be larger. This thesis contributes to a deeper understanding of the trade-offs faced by environmental agencies that want to pursue secondary objectives of protecting additional environmental goods or reducing poverty.
ContributorsGilliland, Ted (Author) / Perrings, Charles (Thesis advisor) / Abbott, Josh K (Committee member) / Kinzig, Ann P (Committee member) / Arizona State University (Publisher)
Created2012
149606-Thumbnail Image.png
Description
The Committee on Rare and Endangered Wildlife Species (CREWS) of the U.S. Fish and Wildlife Service (FWS) made important and lasting contributions to one of the most significant pieces of environmental legislation in U.S. history: the Endangered Species Act of 1973 (ESA). CREWS was a prominent science-advisory body within the

The Committee on Rare and Endangered Wildlife Species (CREWS) of the U.S. Fish and Wildlife Service (FWS) made important and lasting contributions to one of the most significant pieces of environmental legislation in U.S. history: the Endangered Species Act of 1973 (ESA). CREWS was a prominent science-advisory body within the U.S. Department of the Interior (DOI) in the 1960s and 1970s, responsible for advising on the development of federal endangered-wildlife policy. The Committee took full advantage of its scientific and political authority by identifying a particular object of conservation--used in the development of the first U.S. list of endangered species--and establishing captive breeding as a primary conservation practice, both of which were written into the ESA and are employed in endangered-species listing and recovery to this day. Despite these important contributions to federal endangered-species practice and policy, CREWS has received little attention from historians of science or policy scholars. This dissertation is an empirical history of CREWS that draws on primary sources from the Smithsonian Institution (SI) Archives and a detailed analysis of the U.S. congressional record. The SI sources (including the records of the Bird and Mammal Laboratory, an FWS staffed research group stationed at the Smithsonian Institution) reveal the technical and political details of CREWS's advisory work. The congressional record provides evidence showing significant contributions of CREWS and its advisors and supervisors to the legislative process that resulted in the inclusion of key CREWS-inspired concepts and practices in the ESA. The foundational concepts and practices of the CREWS's research program drew from a number of areas currently of interest to several sub-disciplines that investigate the complex relationship between science and society. Among them are migratory bird conservation, systematics inspired by the Evolutionary Synthesis, species-focused ecology, captive breeding, reintroduction, and species transplantation. The following pages describe the role played by CREWS in drawing these various threads together and codifying them as endangered-species policy in the ESA.
ContributorsWinston, Johnny (Author) / Hamilton, Andrew (Thesis advisor) / Maienschein, Jane (Committee member) / Henson, Pamela (Committee member) / Collins, James (Committee member) / Minteer, Ben (Committee member) / Arizona State University (Publisher)
Created2011
149520-Thumbnail Image.png
Description

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to ecosystems create conditions that favor non-native plants and hinder native species. However, it is just as likely that anthropogenic alterations of habitats will favor certain groups of plant species with similar functional traits, whether native or not. Migration of plants can be divided into the following stages: dispersal, germination, establishment, reproduction and spread. Functional traits of species determine which are most successful at each of the stages of invasion or range enlargement. I studied the traits that allow both native and non-native plant species to disperse into freeway corridors, germinate, establish, reproduce, and then disperse along those corridors in Phoenix, Arizona. Field methods included seed bank sample collection and germination, vegetation surveys, and seed trapping. I also evaluated concentrations of plant-available nitrate as a result of localized nitrogen deposition. While many plant species found on the roadsides are either landscape varieties or typical weedy species, some uncommon native species and unexpected non-native species were also encountered. Maintenance regimes greatly influence the amount of vegetative cover and species composition along roadsides. Understanding which traits permit success at various stages of the invasion process indicates whether it is native, non-native, or species with particular traits that are likely to move through the city and establish in the desert. In a related case study conducted in Victoria, Australia, transportation professionals and ecologists were surveyed regarding preferences for roadside landscape design. Roadside design and maintenance projects are typically influenced by different groups of transportation professionals at various stages in a linear project cycle. Landscape architects and design professionals have distinct preferences and priorities compared to other transportation professionals and trained ecologists. The case study reveals the need for collaboration throughout the stages of design, construction and maintenance in order to efficiently manage roadsides for multiple priorities.

ContributorsGade, Kristin Joan (Author) / Kinzig, Ann P (Thesis advisor) / Grimm, Nancy (Committee member) / Perrings, Charles (Committee member) / Robbins, Paul (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2010
189328-Thumbnail Image.png
Description
Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation,

Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation, students need to be able to apply evolutionary principles to real-life situations, and accept that the theory of evolution is the best scientific explanation for the unity and diversity of life on Earth. In order to help students progress on both fronts, biology education researchers need surveys that measure evolution acceptance and assessments that measure students’ ability to apply evolutionary concepts. This dissertation improves the measurement of student understanding and acceptance of evolution by (1) developing a novel Evolutionary Medicine Assessment that measures students’ ability to apply the core principles of Evolutionary Medicine to a variety of health-related scenarios, (2) reevaluating existing measures of student evolution acceptance by using student interviews to assess response process validity, and (3) correcting the validity issues identified on the most widely-used measure of evolution acceptance - the Measure of Acceptance of the Theory of Evolution (MATE) - by developing and validating a revised version of this survey: the MATE 2.0.
ContributorsMisheva, Anastasia Taya (Author) / Brownell, Sara (Thesis advisor) / Barnes, Elizabeth (Committee member) / Collins, James (Committee member) / Cooper, Katelyn (Committee member) / Sterner, Beckett (Committee member) / Arizona State University (Publisher)
Created2023
171956-Thumbnail Image.png
Description
This research interconnects three case studies to examine survivability as a framework through which to explore historic, current, and future collaborations in the face of existential threats, social-ecological-technical uncertainty, and indeterminate futures. Leveraging archival research, document analysis, and ethnographic field work, this study focuses on artist Georgia O’Keeffe’s mid-20th-century construction

This research interconnects three case studies to examine survivability as a framework through which to explore historic, current, and future collaborations in the face of existential threats, social-ecological-technical uncertainty, and indeterminate futures. Leveraging archival research, document analysis, and ethnographic field work, this study focuses on artist Georgia O’Keeffe’s mid-20th-century construction of a nuclear fallout shelter, the COVID Tracking Project’s response work in the first year of the Coronavirus Disease 2019 (COVID-19) pandemic, and three decades of future-facing scientific research performed at Biosphere 2. These cases demonstrate multidisciplinary collaborations across individual, organizational, and institutional configurations at local, national, and international scales in threat contexts spanning nuclear weapons, pandemics, and increasing climate catastrophe. Within each of the three cases, I examine protagonists’ collaborations within knowledge systems, their navigation of scientific disciplinary boundaries, their acknowledgement and negotiation of credibility and expertise, and how their engagements with these systems impact individual and collective survivability. By combining complex adaptive systems (CAS) framings with Science and Technology Studies concepts, I explore ways in which transformations of hierarchy and epistemological boundaries impact, and particularly increase, social-ecological-technical systems (SETS) survivability. Including notions of who and what systems deem worthy of protection, credibility, expertise and agency, imaginations, and how concepts of systems survivability operate, this work builds a conceptual scaffolding to better understand the dynamic workings of quests for survival in the 21st century.
ContributorsWasserman, Sherri (Author) / Selin, Cynthia (Thesis advisor) / Richter, Jennifer (Committee member) / Jalbert, Kirk (Committee member) / Arizona State University (Publisher)
Created2022
171685-Thumbnail Image.png
Description
Insecticide resistance is a continuing issue that negatively affects both public health and agriculture and allows vector-borne diseases to spread throughout the globe. To improve resistance management strategies (RMS), robust susceptibility bioassays need to be performed in order to fill the gap of the relationship between resistant and susceptible genotype

Insecticide resistance is a continuing issue that negatively affects both public health and agriculture and allows vector-borne diseases to spread throughout the globe. To improve resistance management strategies (RMS), robust susceptibility bioassays need to be performed in order to fill the gap of the relationship between resistant and susceptible genotype and phenotype, and a deeper knowledge of how bioassay data relates to vector control success or failure is imperative. A bioassay method that is infrequently used but yields robust results is the topical application bioassay, where the insect is directly treated with a constant volume and concentration of an insecticide via a syringe. To bring more attention to this method, my colleagues and I published a paper in the Journal of Visualized Experiments where the optimized protocol of the topical application bioassay for mosquitoes and fruit flies is described, and the strengths and limitations to the method are explained. To further investigate insecticide susceptibility tests, I set up my individual project where I used Aedes aegypti mosquitoes to compare the topical application bioassay to the commonly used Centers for Disease Control and Prevention (CDC) bottle bioassay and World Health Organization (WHO) tube test. The objective of this study was to test which method exhibited the most variability in mortality results, which would guide the choice of assay to determine the link between resistant and susceptible genotype and phenotype. The results showed that the topical application method did indeed exhibit the least amount of variation, followed by the CDC bottle bioassay (WHO data is currently being collected). This suggests that the topical application bioassay could be a useful tool in insecticide resistance surveillance studies, and, depending on the goal, may be better than the CDC and WHO tube tests for assessing resistance levels at a given site. This study challenges the value of the widely used CDC and WHO assays and provides a discussion on the importance of technical and practical resistance assays. This will help vector control specialists to collect accurate surveillance data that will inform effective RMS.
ContributorsAlthoff, Rachel (Author) / Huijben, Silvie (Thesis advisor) / Harris, Robin (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2022
187341-Thumbnail Image.png
Description
Effective collaboration and cooperation across difference are at the heart of present and future sustainability challenges and solutions. Collaboration among social groups (intragenerational), across time (intergenerational), and across species (interspecies) is each central to achieving sustainability transitions in the 21st century. In practice, there are three types of

Effective collaboration and cooperation across difference are at the heart of present and future sustainability challenges and solutions. Collaboration among social groups (intragenerational), across time (intergenerational), and across species (interspecies) is each central to achieving sustainability transitions in the 21st century. In practice, there are three types of differences that limit collaboration and cooperation toward sustainability outcomes: differences among social groups, differences across time, and differences across species. Each of these differences have corresponding cognitive biases that challenge collaboration. Social cognitive biases challenge collaboration among social groups; temporal cognitive biases challenge collaboration across time; and anthropocentric cognitive biases challenge collaboration across species. In this work, I present three correctives to collaboration challenges spanning the social, temporal, and species cognitive biases through intervention-specific methods that build beyond traditional framings of empathy, toward social, futures, and ecological empathy. By re-theorizing empathy across these domains, I seek to construct a multidimensional theory of empathy for sustainability, and suggest methods to build it, to bridge differences among people, time horizons, and species for sustainability practice.
ContributorsLambert, Lauren Marie-Jasmine (Author) / Selin, Cynthia (Thesis advisor) / Schoon, Michael (Thesis advisor) / Tomblin, David (Committee member) / Berbés-Blázquez, Marta (Committee member) / Arizona State University (Publisher)
Created2023