Matching Items (5)
152667-Thumbnail Image.png
Description
Photochromic molecules, which photoisomerize between two chemically and optically distinct states, are well suited for electron and energy transfer to covalently attached chromophores. This dissertation aims to manipulate electron and energy transfer by photochromic control in a number of organic molecular systems. Herein the synthesis, characterization and function of these

Photochromic molecules, which photoisomerize between two chemically and optically distinct states, are well suited for electron and energy transfer to covalently attached chromophores. This dissertation aims to manipulate electron and energy transfer by photochromic control in a number of organic molecular systems. Herein the synthesis, characterization and function of these organic molecular systems will be described. Electron and energy transfer were quantified by the use of steady state absorbance and fluorescence, as well as time-resolved fluorescence and transient absorbance. A dithienylethene-porphrin-fullerene triad was synthesized to investigate photochromic control of photo-induced electron transfer. Control of two distinct electron transfer pathways was achieved by photochromic switching. A molecular dyad was synthesized, in which fluorescence was modulated by energy transfer by photoinduced isomerization. Also described is a triplet-triplet annihilation upconversion system that covalently attaches fluorophores to improve quantum yield. Overall these studies demonstrate complex molecular switching systems, which may lead to advancement in organic electronic applications and organic based artificial photosynthesis systems.
ContributorsCrisman, Jeffrey (Author) / Gust, John D (Thesis advisor) / Rose, Seth (Committee member) / Moore, Ana (Committee member) / Arizona State University (Publisher)
Created2014
154189-Thumbnail Image.png
Description
Humanity’s demand for energy is increasing exponentially and the dependence on fossil fuels is both unsustainable and detrimental to the environment. To provide a solution to the impending energy crisis, it is reasonable to look toward utilizing solar energy, which is abundant and renewable. One approach to harvesting solar irradiation

Humanity’s demand for energy is increasing exponentially and the dependence on fossil fuels is both unsustainable and detrimental to the environment. To provide a solution to the impending energy crisis, it is reasonable to look toward utilizing solar energy, which is abundant and renewable. One approach to harvesting solar irradiation for fuel purposes is through mimicking the processes of natural photosynthesis in an artificial design to use sunlight and water to store energy in chemical bonds for later use. Thus, in order to design an efficient energy conversion device, the underlying processes of the natural system must be understood. An artificial photosynthetic device has many components and each can be optimized separately. This work deals with the design, construction and study of some of those components. The first chapter provides an introduction to this work. The second chapter shows a proof of concept for a water splitting dye sensitized photoelectrochemical cell followed by the presentation of a new p-type semiconductor, the design of a modular cluster binding protein that can be used for incorporating catalysts, and a new anchoring group for semiconducting oxides with high electron injection efficiency. The third chapter investigates the role of electronic coupling and thermodynamics for photoprotection in artificial systems by triplet-triplet energy transfer from tetrapyrroles to carotenoids. The fourth chapter describes a mimic of the proton-coupled electron transfer in photosystem II and confirms that in the artificial system a concerted mechanism operates. In the fifth chapter, a microbial system is designed to work in tandem with a photovoltaic device to produce high energy fuels. A variety of quinone redox mediators have been synthesized to shuttle electrons from an electron donor to the microbial system. Lastly, the synthesis of a variety of photosensitizers is detailed for possible future use in artificial systems. The results of this work helps with the understanding of the processes of natural photosynthesis and suggests ways to design artificial photosynthetic devices that can contribute to solving the renewable energy challenge.
ContributorsBrown, Chelsea L (Author) / Moore, Ana L (Thesis advisor) / Gust, Devens (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2015
154991-Thumbnail Image.png
Description
Sunlight, the most abundant source of energy available, is diffuse and intermittent; therefore it needs to be stored in chemicals bonds in order to be used any time. Photosynthesis converts sunlight into useful chemical energy that organisms can use for their functions. Artificial photosynthesis aims to use the essential chemistry

Sunlight, the most abundant source of energy available, is diffuse and intermittent; therefore it needs to be stored in chemicals bonds in order to be used any time. Photosynthesis converts sunlight into useful chemical energy that organisms can use for their functions. Artificial photosynthesis aims to use the essential chemistry of natural photosynthesis to harvest solar energy and convert it into fuels such as hydrogen gas. By splitting water, tandem photoelectrochemical solar cells (PESC) can produce hydrogen gas, which can be stored and used as fuel. Understanding the mechanisms of photosynthesis, such as photoinduced electron transfer, proton-coupled electron transfer (PCET) and energy transfer (singlet-singlet and triplet-triplet) can provide a detailed knowledge of those processes which can later be applied to the design of artificial photosynthetic systems. This dissertation has three main research projects. The first part focuses on design, synthesis and characterization of suitable photosensitizers for tandem cells. Different factors that can influence the performance of the photosensitizers in PESC and the attachment and use of a biomimetic electron relay to a water oxidation catalyst are explored. The second part studies PCET, using Nuclear Magnetic Resonance and computational chemistry to elucidate the structure and stability of tautomers that comprise biomimetic electron relays, focusing on the formation of intramolecular hydrogen bonds. The third part of this dissertation uses computational calculations to understand triplet-triplet energy transfer and the mechanism of quenching of the excited singlet state of phthalocyanines in antenna models by covalently attached carotenoids.
ContributorsTejeda Ferrari, Marely (Author) / Moore, Ana (Thesis advisor) / Mujica, Vladimiro (Thesis advisor) / Gust, John (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2016
155512-Thumbnail Image.png
Description
The primary carbon fixing enzyme Rubisco maintains its activity through release of trapped inhibitors by Rubisco activase (Rca). Very little is known about the interaction, but binding has been proposed to be weak and transient. Extensive effort was made to develop Förster resonance energy transfer (FRET) based assays to understand

The primary carbon fixing enzyme Rubisco maintains its activity through release of trapped inhibitors by Rubisco activase (Rca). Very little is known about the interaction, but binding has been proposed to be weak and transient. Extensive effort was made to develop Förster resonance energy transfer (FRET) based assays to understand the physical interaction between Rubisco and Rca, as well as understand subunit exchange in Rca.

Preparations of labeled Rubisco and Rca were utilized in a FRET-based binding assay. Although initial data looked promising, this approach was not fruitful, as no true FRET signal was observed. One possibility is that under the conditions tested, Rca is not able to undergo the structural reorganizations necessary to achieve binding-competent conformations. Rca may also be asymmetric, leading to less stable binding of an already weak interaction.

To better understand the structural adjustments of Rca, subunit exchange between different oligomeric species was examined. It was discovered that subunit exchange is nucleotide dependent, with ADP giving the fastest exchange, ATP giving slower exchange and ATPS inhibiting exchange. Manganese, like ADP, destabilizes subunit-subunit interactions for rapid and facile exchange between oligomers. Three different types of assemblies were deduced from the rates of subunit exchange: rigid types with extremely slow dissociation of individual protomers, tight assemblies with the physiological substrate ATP, and loose assemblies that provide fast exchange due to high ADP.

Information gained about Rca subunit exchange can be used to reexamine the physical interaction between Rubisco and Rca using the FRET-binding assay. These binding assays will provide insight into Rca states able to interact with Rubisco, as well as define conditions to generate bound states for structural analysis. In combination with assembly assays, subunit exchange assays and reactivation studies will provide critical information about the structure/function relationship of Rca in the presence of different nucleotides. Together, these FRET-based assays will help to characterize the Rca regulation mechanism and provide valuable insight into the Rubisco reactivation mechanism.
ContributorsForbrook, Dayna S (Author) / Wachter, Rebekka M. (Thesis advisor) / Allen, James (Committee member) / Wang, Xu (Committee member) / Arizona State University (Publisher)
Created2017
161661-Thumbnail Image.png
Description
Efficient light collection and utilization are highly needed for developing effective photonic devices and materials. Nature is the master of organizing photosynthetic pigments into a densely packed state without self-quenching and conducting efficient energy transfer in a directed manner via implementing sophisticated proteins as scaffolds. The natural light-harvesting complex inspires

Efficient light collection and utilization are highly needed for developing effective photonic devices and materials. Nature is the master of organizing photosynthetic pigments into a densely packed state without self-quenching and conducting efficient energy transfer in a directed manner via implementing sophisticated proteins as scaffolds. The natural light-harvesting complex inspires the design of artificial photonic systems by utilizing synthetic templates to control the spatial arrangement and energy landscape of photoactive components. The self-assembled DNA nanostructures are highly programmable and intrinsically addressable, which makes them excellent templates for the precise organization of chromophores with desired complexity as artificial light-harvesting systems and photonic nanodevices for efficient photon capture and excitation energy transport. This dissertation focuses on the fundamental understanding and rational engineering of a series of artificial excitonic systems using programmable DNA architectures as templates to direct the self-assembly of cyanine dye aggregates. First, the DNA-templated pseudoisocyanine (PIC) dye aggregates were systematically studied to explore the effect of sequence and length of DNA templates on their excitonic properties. The results revealed that the PIC dye aggregates enable energy transfer along a defined track. Next, the benzothiazole cyanine dye K21 was introduced to form dye aggregates on double-stranded DNA templates. The strong inter-molecular coupling and weak sequence dependency of the K21 aggregates make it possible to mediate the efficient directional energy transfer over a distance up to 30 nm. Finally, the DNA helix-bundle structures with extended size and complicated geometries were employed to organize K21 dye as the scalable, addressable, and programmable excitonic complexes conducting sub-micron-scale directional exciton transport and serving as robust and modular building blocks to construct higher-order excitonic architectures.
ContributorsZhou, Xu (Author) / Yan, Hao (Thesis advisor) / Woodbury, Neal W (Committee member) / Green, Alexander A (Committee member) / Arizona State University (Publisher)
Created2021