Matching Items (2)
152433-Thumbnail Image.png
Description
Metabolic engineering is an extremely useful tool enabling the biosynthetic production of commodity chemicals (typically derived from petroleum) from renewable resources. In this work, a pathway for the biosynthesis of styrene (a plastics monomer) has been engineered in Escherichia coli from glucose by utilizing the pathway for the naturally occurring

Metabolic engineering is an extremely useful tool enabling the biosynthetic production of commodity chemicals (typically derived from petroleum) from renewable resources. In this work, a pathway for the biosynthesis of styrene (a plastics monomer) has been engineered in Escherichia coli from glucose by utilizing the pathway for the naturally occurring amino acid phenylalanine, the precursor to styrene. Styrene production was accomplished using an E. coli phenylalanine overproducer, E. coli NST74, and over-expression of PAL2 from Arabidopsis thaliana and FDC1 from Saccharomyces cerevisiae. The styrene pathway was then extended by just one enzyme to either (S)-styrene oxide (StyAB from Pseudomonas putida S12) or (R)-1,2-phenylethanediol (NahAaAbAcAd from Pseudomonas sp. NCIB 9816-4) which are both used in pharmaceutical production. Overall, these pathways suffered from limitations due to product toxicity as well as limited precursor availability. In an effort to overcome the toxicity threshold, the styrene pathway was transferred to a yeast host with a higher toxicity limit. First, Saccharomyces cerevisiae BY4741 was engineered to overproduce phenylalanine. Next, PAL2 (the only enzyme needed to complete the styrene pathway) was then expressed in the BY4741 phenylalanine overproducer. Further strain improvements included the deletion of the phenylpyruvate decarboxylase (ARO10) and expression of a feedback-resistant choristmate mutase (ARO4K229L). These works have successfully demonstrated the possibility of utilizing microorganisms as cellular factories for the production styrene, (S)-styrene oxide, and (R)-1,2-phenylethanediol.
ContributorsMcKenna, Rebekah (Author) / Nielsen, David R (Thesis advisor) / Torres, Cesar (Committee member) / Caplan, Michael (Committee member) / Jarboe, Laura (Committee member) / Haynes, Karmella (Committee member) / Arizona State University (Publisher)
Created2014
154882-Thumbnail Image.png
Description
Synthetic biology and metabolic engineering has aided the production of chemicals using renewable resources, thus offering a solution to our dependence on the dwindling petroleum resources. While a major portion of petroleum resources go towards production of fuels, a significant fraction also goes towards production of specialty chemicals. There has

Synthetic biology and metabolic engineering has aided the production of chemicals using renewable resources, thus offering a solution to our dependence on the dwindling petroleum resources. While a major portion of petroleum resources go towards production of fuels, a significant fraction also goes towards production of specialty chemicals. There has been a growing interest in recent years in commercializing bio-based production of such high value compounds. In this thesis the biosynthesis of aromatic esters has been explored, which have typical application as flavor and fragrance additive to food, drinks and cosmetics. Recent progress in pathway engineering has led to the construction of several aromatic alcohol producing pathways, the likes of which can be utilized to engineer aromatic ester biosynthesis by addition of a suitable enzyme from the acyltransferase class. Enzyme selection and screening done in this work has identified chloramphenicol O-acetyltransferase enzyme(CAT) as a potential candidate to complete the biosynthetic pathways for each of 2-phenethyl acetate, benzyl acetate, phenyl acetate and acetyl salicylate. In the end, E. coli strains capable of producing up to 60 mg/L 2-phenethyl acetate directly from glucose were successfully constructed by co-expressing CAT in a previously engineered 2-phenylethanol producing host.
ContributorsMadathil Soman Pillai, Karthika (Author) / Nielsen, David (Thesis advisor) / Wang, Xuan (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2016