Matching Items (2)
152328-Thumbnail Image.png
Description
Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the

Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the low specific capacities of the active materials in the electrodes. In the search for high-performance anode materials for Li-ion batteries, many alternatives to carbonaceous materials have been studied. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical capacity of 3500 mAh/g, making silicon a potential high density anode material. However, a large volume expansion of 300% occurs due to changes in the structure during lithium insertion, often leading to pulverization of the silicon. To this end, a class of silicon based cage compounds called clathrates are studied for electrochemical reactivity with lithium. Silicon-clathrates consist of silicon covalently bonded in cage structures comprised of face sharing Si20, Si24 and/or Si28 clusters with guest ions occupying the interstitial positions in the polyhedra. Prior to this, silicon clathrates have been studied primarily for their superconducting and thermoelectric properties. In this work, the synthesis and electrochemical characterization of two categories of silicon clathrates - Type-I silicon clathrate with aluminum framework substitution and barium guest ions (Ba8AlxSi46-x) and Type-II silicon clathrate with sodium guest ions (Nax Si136), are explored. The Type-I clathrate, Ba8AlxSi46-x consists of an open framework of aluminium and silicon, with barium (guest) atoms occupying the interstitial positions. X-ray diffraction studies have shown that a crystalline phase of clathrate is obtained from synthesis, which is powdered to a fine particle size to be used as the anode material in a Li-ion battery. Electrochemical measurements of these type of clathrates have shown that capacities comparable to graphite can be obtained for up to 10 cycles and lower capacities can be obtained for up to 20 cycles. Unlike bulk silicon, the clathrate structure does not undergo excessive volume change upon lithium intercalation, and therefore, the crystal structure is morphologically stable over many cycles. X-ray diffraction of the clathrate after cycling showed that crystallinity is intact, indicating that the clathrate does not collapse during reversible intercalation with lithium ions. Electrochemical potential spectroscopy obtained from the cycling data showed that there is an absence of formation of lithium-silicide, which is the product of lithium alloying with diamond cubic silicon. Type II silicon clathrate, NaxSi136, consists of silicon making up the framework structure and sodium (guest) atoms occupying the interstitial spaces. These clathrates showed very high capacities during their first intercalation cycle, in the range of 3,500 mAh/g, but then deteriorated during subsequent cycles. X-ray diffraction after one cycle showed the absence of clathrate phase and the presence of lithium-silicide, indicating the disintegration of clathrate structure. This could explain the silicon-like cycling behavior of Type II clathrates.
ContributorsRaghavan, Rahul (Author) / Chan, Candace K. (Thesis advisor) / Crozier, Peter (Committee member) / Petuskey, William T (Committee member) / Arizona State University (Publisher)
Created2013
154768-Thumbnail Image.png
Description
Silicone compounds have a very low surface energy due to highly flexible Si-O-Si backbone and large number of –CH3 groups, but these compounds are extremely hydrophobic and thus have limited applications in aqueous formulations. Modification of such silicone compounds by grafting hydrophilic chains provides a wide range of silicone products

Silicone compounds have a very low surface energy due to highly flexible Si-O-Si backbone and large number of –CH3 groups, but these compounds are extremely hydrophobic and thus have limited applications in aqueous formulations. Modification of such silicone compounds by grafting hydrophilic chains provides a wide range of silicone products called "Silicone Surfactants". Silicone surfactants are surface active agents which get adsorbed at the air-water interface thereby, reducing the interfacial tension. Some of the larger applications of silicone surfactant are in the manufacture of plastic foams, in personal care products and as spreading and wetting agents (Hill, R.M, 2002).

In this thesis, a series of silicone surfactant graft copolymers were synthesized via hydrosilylation reaction. Poly(ethylene glycol) (PEG) of different chain length was grafted to a hydrophobic Poly(methylhydrosiloxane) (PMHS) backbone to improve the final hydrophilicity. Also, a positively charged quaternary ammonium salt (allyltriethylammonium bromide) was grafted to the PMHS backbone. The objective of this thesis was to synthesize polymers in predefined ratios of the above mentioned side groups and utilize these polymers to-

1) Study the effect of PEG chain length and its composition on the hydrophilicity of the polymer.

2) Study the effect of PEG: ammonium salt ratio on the surface tension of aqueous systems.

Analysis of FT-IR and 1H NMR spectra of the polymers confirmed the predicted structure. The absence of characteristic Si-H absorbance peak at 2160 cm-1 in FT-IR spectra indicates consumption of silane groups along the polymer backbone. The actual moles of the side chain grafted on the backbone are calculated by 1H NMR peak integration. The results of contact angle studies indicated an increase in hydrophilicity with an increase in the composition of PEG in molecule. A 2*2 factorial DOE analysis reported that the fraction of Si-H bonds converted to PEG grafts was the critical factor towards increasing the hydrophilicity (p value of 0.015). Surface tension studies report that the air-water interfacial tension of the synthesized polymers is between 28mN/m – 45mN/m. The amount of Si-H was concluded to be the deciding factor in lowering the surface tension.
ContributorsSingh, Pummy (Author) / Green, Matthew (Thesis advisor) / He, Ximin (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2016