Matching Items (5)
152229-Thumbnail Image.png
Description
A significant portion of stars occur as binary systems, in which two stellar components orbit a common center of mass. As the number of known exoplanet systems continues to grow, some binary systems are now known to harbor planets around one or both stellar components. As a first look into

A significant portion of stars occur as binary systems, in which two stellar components orbit a common center of mass. As the number of known exoplanet systems continues to grow, some binary systems are now known to harbor planets around one or both stellar components. As a first look into composition of these planetary systems, I investigate the chemical compositions of 4 binary star systems, each of which is known to contain at least one planet. Stars are known to vary significantly in their composition, and their overall metallicity (represented by iron abundance, [Fe/H]) has been shown to correlate with the likelihood of hosting a planetary system. Furthermore, the detailed chemical composition of a system can give insight into the possible properties of the system's known exoplanets. Using high-resolution spectra, I quantify the abundances of up to 28 elements in each stellar component of the binary systems 16 Cyg, 83 Leo, HD 109749, and HD 195019. A direct comparison is made between each star and its binary companion to give a differential composition for each system. For each star, a comparison of elemental abundance vs. condensation temperature is made, which may be a good diagnostic of refractory-rich terrestrial planets in a system. The elemental ratios C/O and Mg/Si, crucial in determining the atmospheric composition and mineralogy of planets, are calculated and discussed for each star. Finally, the compositions and diagnostics of each binary system are discussed in terms of the known planetary and stellar parameters for each system.
ContributorsCarande, Bryce (Author) / Young, Patrick (Thesis advisor) / Patience, Jennifer L (Thesis advisor) / Anbar, Ariel D (Committee member) / Arizona State University (Publisher)
Created2013
152707-Thumbnail Image.png
Description
As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation

As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation in elemental abundances of nearby stars, the actual range in stellar abundances can be determined using statistical methods. This research emphasizes the diversity of stellar elemental abundances and how that could affect the environment from which planets form. An intrinsic variation has been found to exist for almost all of the elements studied by most abundance-finding groups. Specifically, this research determines abundances for a set of 458 F, G, and K stars from spectroscopic planet hunting surveys for 27 elements, including: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, La, Ce, Nd, Eu, and Hf. Abundances of the elements in many known exosolar planet host stars are calculated for the purpose investigating new ways to visualize how stellar abundances could affect planetary systems, planetary formation, and mineralogy. I explore the Mg/Si and C/O ratios as well as place these abundances on ternary diagrams with Fe. Lastly, I emphasize the unusual stellar abundance of τ Ceti. τ Ceti is measured to have 5 planets of Super-Earth masses orbiting in near habitable zone distances. Spectroscopic analysis finds that the Mg/Si ratio is extremely high (~2) for this star, which could lead to alterations in planetary properties. τ Ceti's low metallicity and oxygen abundance account for a change in the location of the traditional habitable zone, which helps clarify a new definition of habitable planets.
ContributorsPagano, Michael (Author) / Young, Patrick (Thesis advisor) / Shim, Sang-Heon (Committee member) / Patience, Jennifer (Committee member) / Desch, Steven (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2014
156961-Thumbnail Image.png
Description
The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the coming years. Many more planets with a size similar to earth are expected to be found. Currently, software for characterizing

The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the coming years. Many more planets with a size similar to earth are expected to be found. Currently, software for characterizing rocky planet interiors is lacking. There is no doubt that a planet’s interior plays a key role in determining surface conditions including atmosphere composition and land area. Comparing data with diagrams of mass vs. radius for terrestrial planets provides only a first-order estimate of the internal structure and composition of planets [e.g. Seager et al 2007]. This thesis will present a new Python library, ExoPlex, which has routines to create a forward model of rocky exoplanets between 0.1 and 5 Earth masses. The ExoPlex code offers users the ability to model planets of arbitrary composition of Fe-Si-Mg-Al-Ca-O in addition to a water layer. This is achieved by modeling rocky planets after the earth and other known terrestrial planets. The three distinct layers which make up the Earth's internal structure are: core, mantle, and water. Terrestrial planet cores will be dominated by iron however, like earth, there may be some quantity of light element inclusion which can serve to enhance expected core volumes. In ExoPlex, these light element inclusions are S-Si-O and are included as iron-alloys. Mantles will have a more diverse mineralogy than planet cores. Unlike most other rocky planet models, ExoPlex remains unbiased in its treatment of the mantle in terms of composition. Si-Mg-Al-Ca oxide components are combined by predicting the mantle mineralogy using a Gibbs free energy minimization software package called Perple\_X [Connolly 2009]. By allowing an arbitrary composition, ExoPlex can uniquely model planets using their host star’s composition as an indicator of planet composition. This is a proven technique [Dorn et al 2015] which has not yet been widely utilized, possibly due to the lack of availability of easy to use software. I present a model sensitivity analysis to indicate the most important parameters to constrain in future observing missions. ExoPlex is currently available on PyPI so it may be installed using pip or conda on Mac OS or Linux based operating systems. It requires a specific scripting environment which is explained in the documentation currently stored on the ExoPlex GitHub page.
ContributorsLorenzo, Alejandro M., Jr (Author) / Desch, Steven (Thesis advisor) / Shim, Dan S.-H. (Committee member) / Line, Michael (Committee member) / Li, Mingming (Committee member) / Arizona State University (Publisher)
Created2018
Description
The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For

The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi-epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity.

For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system. By analyzing archival HST data and examining the near-infrared colors of HD 106906b, we conclude that the companion shows weak evidence of a circumplanetary dust disk or cloud. Finally, I measure the properties of the low mass directly imaged planet 51 Eridani b. We combined published J, H spectra with updated LP photometry, new K1, K2 spectra, and MS photometry. The new data confirms that the planet has redder than similar spectral type objects, which might be due to the planet still transitioning from to L-to-T. Model atmospheres indicate a cooler effective temperature best fit by a patchy cloud atmosphere making 51 Eri b an excellent candidate for future variability studies with the James Webb Space Telescope.
ContributorsRajan, Abhijith (Author) / Patience, Jennifer (Thesis advisor) / Young, Patrick (Thesis advisor) / Scowen, Paul (Committee member) / Butler, Nathaniel (Committee member) / Shkolnik, Evgenya (Committee member) / Arizona State University (Publisher)
Created2017
157751-Thumbnail Image.png
Description
The 78 secondary eclipse depths for a sample of 36 transiting hot Jupiters observed at 3.6- and 4.5 μm using the Spitzer Space Telescope is here reported. Eclipse results for 27 of these planets are new and include highly irradiated worlds such as KELT-7b (Kilodegree Extremely Little Telescope), WASP-87b (Wide

The 78 secondary eclipse depths for a sample of 36 transiting hot Jupiters observed at 3.6- and 4.5 μm using the Spitzer Space Telescope is here reported. Eclipse results for 27 of these planets are new and include highly irradiated worlds such as KELT-7b (Kilodegree Extremely Little Telescope), WASP-87b (Wide Angle Search for Planets), WASP-76b, and WASP-64b, and important targets for the James Webb Space Telescope (JWST) such as WASP-62b. WASP-62b is found to have a slightly eccentric orbit (ecosω=0.00614±0.00058), and the eccentricities of HAT-P-13b (Hungarian Automated Telescope Project) and WASP-14b are confirmed. The remainder are individually consistent with circular orbits, but there is statistical evidence for eccentricity increasing with orbital period in this range from 1 to 5 days. Day-side brightness temperatures (Tb) for the planets yield information on albedo and heat redistribution, following Cowan and Agol (2011). Planets having maximum day side temperatures exceeding ∼2200 K are consistent with zero albedo and distribution of stellar irradiance uniformly over the day-side hemisphere. The most intriguing result is a detection of a systematic difference between the emergent spectra of these hot Jupiters as compared to blackbodies. The ratio of observed brightness temperatures, Tb(4.5)/Tb(3.6), increases with equilibrium temperature by 98±26 parts-per-million per Kelvin, over the entire temperature range in the sample (800K to 2500K). No existing model predicts this trend over such a large range of temperature. This may be due to a structural difference in the atmospheric temperature profile between the real planetary atmospheres as compared to models.
ContributorsGarhart, Emily (Author) / Christensen, Phil (Thesis advisor) / Line, Michael (Committee member) / Shim, Dan (Committee member) / Arizona State University (Publisher)
Created2019